精英家教网 > 高中数学 > 题目详情
3.已知点A(x1,y1),B(x2,y2)是椭圆$\frac{{x}^{2}}{2}$+y2=1两个不同的动点,且满足x1•y1+x2•y2=-$\sqrt{2}$,则y12+y22的值是1.

分析 设A($\sqrt{2}$cosα,sinα),B=($\sqrt{2}$cosβ,sinβ),α,β∈[0,2π),则得到x1•y1+x2•y2=$\frac{\sqrt{2}}{2}$(sin2α+sin2β)=-$\sqrt{2}$,即sin2α+sin2β=-2,根据三角函数的性质,可得sin2α=sin2β=-1,即可求出α=$\frac{3π}{4}$,β=$\frac{7π}{4}$,即可求出答案.

解答 解:设A($\sqrt{2}$cosα,sinα),B=($\sqrt{2}$cosβ,sinβ),α,β∈[0,2π)
∴x1•y1+x2•y2=$\sqrt{2}$sinαcosα+$\sqrt{2}$sinβcosβ=$\frac{\sqrt{2}}{2}$(sin2α+sin2β)=-$\sqrt{2}$,
∴sin2α+sin2β=-2,
∵-1≤sin2α≤1,-1≤sin2β≤1,
∴sin2α=sin2β=-1,
∵点A(x1,y1),B(x2,y2)是椭圆$\frac{{x}^{2}}{2}$+y2=1两个不同的动点,
∴不妨令α=$\frac{3π}{4}$,β=$\frac{7π}{4}$,
∴y12+y22=sin2α+sin2β=$\frac{1}{2}$+$\frac{1}{2}$=1,
故答案为:1

点评 本题考查了椭圆的参数方程,以及三角函数的有界性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.A={x|2x2-7x+3≤0},B={x||x|<a}
(1)当a=2时,求A∩B,A∪B;
(2)若(∁RA)∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点P(4,8)且被圆x2+y2=25截得的弦长为6的直线方程是(  )
A.3x-4y+20=0B.3x-4y+20=0或x=4C.4x-3y+8=0D.4x-3y+8=0或x=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=x(3-2x)($0<x<\frac{3}{2}$)的最大值是(  )
A.$\frac{9}{8}$B.$\frac{9}{4}$C.$\frac{3}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.崇庆中学高三年级某班班班主任近期对班上每位同学的成绩作相关分析时,得到周同学的某些成绩数据如下:
第一次考试第二次考试第三次考试第四次考试
数学总分118119121122
总分年级排名133127121119
(1)求总分年级名次关于数学总分的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$(必要时用分数表示)
(2)若周同学想在下次的测试时考入年级前100名,预测该同学下次测试的数学成绩至少应考多少分(取整数,可四舍五入).
(参考公式$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设△ABC的内角A,B,C的对边分别为a,b,c,A为钝角,且b=atanB.
(1)证明:$A-B=\frac{π}{2}$;
(2)求sinB+2sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在极坐标系中,圆C1:ρ=4cosθ与圆C2:ρ=2sinθ相交于A,B两点,则|AB|=(  )
A.2B.$\sqrt{2}$C.$\frac{{4\sqrt{5}}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=4x的焦点为F,A、B,为抛物线上两点,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,O为坐标原点,则△AOB的面积为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an}中,a2=2,a4=8,数列{bn}满足:b1=-1,bn+1=bn+(2n-1).
(1)求数列{an}和数列{bn}的通项公式;
(2)若cn=$\frac{{{a_n}{b_n}}}{n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案