精英家教网 > 高中数学 > 题目详情
4.方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆的一个必要不充分条件是(  )
A.m∈(-5,3)B.m∈(-3,5)C.m∈(-3,1)∪(1,5)D.m∈(-5,1)∪(1,3)

分析 由方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆,可得$\left\{\begin{array}{l}{5-m>0}\\{m+3>0}\\{5-m≠m+3}\end{array}\right.$,解得:m即可判断出结论.

解答 解:由方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆,可得$\left\{\begin{array}{l}{5-m>0}\\{m+3>0}\\{5-m≠m+3}\end{array}\right.$,解得:-3<m<5,且m≠1,
∴方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示椭圆的一个必要不充分条件是m∈(-3,5),
故选:B.

点评 本题考查了椭圆的标准方程、充要条件的判定、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.则椭圆的长轴长为2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinx,cosx),向量$\overrightarrow{b}$=($\sqrt{3}$cosx,-cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+$\frac{1}{2}$.
(1)求函数f(x)的单调递减区间;
(2)将函数y=f(x)图象上所有点向左平行移动$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在区间[0,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.顶点在原点,焦点为F(1,0)的抛物线方程为y2=4x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.阅读如图的程序框图,运行相应的程序,则输出的S的值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.盒中装有11个乒乓球,其中6个新球,5个旧球,不放回地依次取出2个球,在第一次取出新球的条件下,第二次也取到新球的概率为(  )
A.$\frac{3}{5}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线l1:y=x+a和直线l2:y=x+b将圆(x-1)2+(y-2)2=8分成长度相等的四段弧,则a2+b2=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=x3-ax2+x-1在点(1,f (1))的切线与直线x+2y-3=0垂直,则实数a等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设点A(2,0),B(4,2),则直线AB的斜率为(  )
A.1B.-1C.-2D.不存在

查看答案和解析>>

同步练习册答案