精英家教网 > 高中数学 > 题目详情

【题目】某学校实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求理、化必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( .

A.444B.1776C.1440D.1560

【答案】B

【解析】

先在生、史、地、政中四选一,然后按照语文、外语排课进行分类讨论,由此求得所有的安排方法总数.

理、化、生、史、地、政六选三,且理、化必选,

所以只需在生、史、地、政中四选一,有(种).

对语文、外语排课进行分类,第1类:语文、外语有一科在下午第一节,则另一科可以安排在上午四节课中的任意一节,剩下的四科可全排列,有(种);

2类:语文、外语都不在下午第一节,则下午第一节可在除语、数、外三科的另三科中选择,有(种),

语文和外语可都安排在上午,即上午第一、三节,上午第一、四节,上午第二、四节3种,

也可一科在上午任一节,一科在下午第二节,有(种),

其他三科可以全排列,有(种).

综上,共有(种).

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆和圆为椭圆的左、右焦点,点在椭圆上,当直线与圆相切时,

I)求的方程;

)直线与椭圆和圆都相切,切点分别为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的方程有实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;

(Ⅱ)若曲线与曲线相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民用天然气实行阶梯价格制度,具体见下表:

阶梯

年用气量(立方米)

价格(元/立方米)

第一阶梯

不超过228的部分

3.25

第二阶梯

超过228而不超过348的部分

3.83

第三阶梯

超过348的部分

4.70

从该市随机抽取10户(一套住宅为一户)同一年的天然气使用情况,得到统计表如下:

居民用气编号

1

2

3

4

5

6

7

8

9

10

年用气量(立方米)

95

106

112

161

210

227

256

313

325

457

1)求一户居民年用气费y(元)关于年用气量x(立方米)的函数关系式;

2)现要在这10户家庭中任意抽取3户,求抽到的年用气量超过228立方米而不超过348立方米的用户数的分布列与数学期望;

3)若以表中抽到的10户作为样本估计全市居民的年用气情况,现从全市中依次抽取10户,其中恰有k户年用气量不超过228立方米的概率为,求取最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,MPA上的点,为正三角形,

1)求证:平面平面PAC

2)若平面BPC,求证:点M为线段PA的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在R上的函数的导函数,且,则 的大小关系为( )

A. a<b<c B. b<a<c C. c<a<b D. c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若处取到极值,求的值,并求的单调区间;

2)若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是的中点,则下列说法:

平面;②;③;④平面

其中正确的命题序号是________.

查看答案和解析>>

同步练习册答案