【题目】已知直线:,:,圆:.
(1)当为何值时,直线与平行;
(2)当直线与圆相交于,两点,且时,求直线的方程.
【答案】(1);(2)或.
【解析】
(1)当时,由直线平行,可得两直线斜率相等,即可求出或,将 的值带回直线方程进行验证,可舍去;当,求出两直线方程进行验证是否平行,进而可求出的值.
(2)将已知圆的方程整理成标准方程形式,得到圆的半径和圆心,求出圆心到直线的距离,由勾股定理可知,得到关于 的方程,从而可求出的值,进而可求直线的方程.
解:(1)当 时,直线的斜率,的斜率,由两直线平行可知,
,解得或.当时,:,:,符合题意,
当时,:,:,此时两直线重合,不符合题意.
当时,:,:,两直线垂直,不符合题意;
综上所述:.
(2)由题意知,:,则圆的半径,圆心为,
则圆心到直线的距离.由,得
整理得, ,解得或.
故所求直线方程为或.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x-m|-|2x+2m|(m>0).
(Ⅰ)当m=1时,求不等式f(x)≥1的解集;
(Ⅱ)若x∈R,t∈R,使得f(x)+|t-1|<|t+1|,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是抛物线上一点,点为抛物线的焦点,.
(1)求直线的方程;
(2)若直线与抛物线的另一个交点为,曲线在点与点处的切线分别为,直线相交于点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,,,,是的中点,E是棱上一动点.
(1)若E是棱的中点,证明:平面;
(2)求二面角的余弦值;
(3)是否存在点E,使得,若存在,求出E的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗、、.经过引种实验发现,引种树苗的自然成活率为,引种树苗、的自然成活率均为.
(1)任取树苗、、各一棵,估计自然成活的棵数为,求的分布列及其数学期望;
(2)将(1)中的数学期望取得最大值时的值作为种树苗自然成活的概率.该农户决定引种棵种树苗,引种后没有自然成活的树苗有的树苗可经过人工栽培技术处理,处理后成活的概率为,其余的树苗不能成活.
①求一棵种树苗最终成活的概率;
②若每棵树苗引种最终成活可获利元,不成活的每棵亏损元,该农户为了获利期望不低于万元,问至少要引种种树苗多少棵?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥中, 平面, ,点分别为的中点,设直线与平面交于点.
(1)已知平面平面,求证: .
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列的前项和为,若存在正整数,且,使得,同时成立,则称数列为“数列”.
(1)若首项为,公差为的等差数列是“数列”,求的值;
(2)已知数列为等比数列,公比为.
①若数列为“数列”,,求的值;
②若数列为“数列”,,求证:为奇数,为偶数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com