精英家教网 > 高中数学 > 题目详情

【题目】已知直线,圆.

1)当为何值时,直线平行;

2)当直线与圆相交于两点,且时,求直线的方程.

【答案】(1);(2.

【解析】

1)当时,由直线平行,可得两直线斜率相等,即可求出,将 的值带回直线方程进行验证,可舍去;当,求出两直线方程进行验证是否平行,进而可求出的值.

2)将已知圆的方程整理成标准方程形式,得到圆的半径和圆心,求出圆心到直线的距离,由勾股定理可知,得到关于 的方程,从而可求出的值,进而可求直线的方程.

解:(1)当 时,直线的斜率的斜率,由两直线平行可知,

,解得.时,,符合题意,

时,,此时两直线重合,不符合题意.

时,,两直线垂直,不符合题意;

综上所述:.

2)由题意知,,则圆的半径,圆心为

则圆心到直线的距离.,得

整理得, ,解得.

故所求直线方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=|x-m|-|2x+2m|m0).

(Ⅰ)当m=1时,求不等式fx)≥1的解集;

(Ⅱ)若xRtR,使得fx+|t-1||t+1|,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

1)当时,求函数的极值;

2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上一点,点为抛物线的焦点,.

1)求直线的方程;

2)若直线与抛物线的另一个交点为,曲线在点与点处的切线分别为,直线相交于点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,的中点,E是棱上一动点.

(1)若E是棱的中点,证明:平面

(2)求二面角的余弦值;

(3)是否存在点E,使得,若存在,求出E的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是边长为4的菱形,平面.

1)证明:

2)若的中点,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗.经过引种实验发现,引种树苗的自然成活率为,引种树苗的自然成活率均为

1)任取树苗各一棵,估计自然成活的棵数为,求的分布列及其数学期望;

2)将(1)中的数学期望取得最大值时的值作为种树苗自然成活的概率.该农户决定引种种树苗,引种后没有自然成活的树苗有的树苗可经过人工栽培技术处理,处理后成活的概率为,其余的树苗不能成活.

①求一棵种树苗最终成活的概率;

②若每棵树苗引种最终成活可获利元,不成活的每棵亏损元,该农户为了获利期望不低于万元,问至少要引种种树苗多少棵?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥, 平面 分别为的中点,设直线与平面交于点.

1已知平面平面求证: .

2求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为,若存在正整数,且,使得同时成立,则称数列数列”.

1)若首项为,公差为的等差数列数列,求的值;

2)已知数列为等比数列,公比为.

①若数列数列,求的值;

②若数列数列,求证:为奇数,为偶数.

查看答案和解析>>

同步练习册答案