如图1,在正方形中,点分别是的中点,与交于点为中点,点在线段上,且.现将分别沿折起,使点重合于点(该点记为),如图2所示.
(1)若,求证:平面;
(2)是否存在正实数,使得直线与平面所成角的正弦值为?若存在,求出的值;若不存在,请说明理由.
科目:高中数学 来源:2017届江苏南京市盐城高三一模考试数学试卷(解析版) 题型:解答题
如图所示,某街道居委会拟在地段的居民楼正南方向的空白地段上建一个活动中心,其中米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形,上部分是以为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长不超过米,其中该太阳光线与水平线的夹角满足.
(1)若设计米,米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计与的长度,可使得活动中心的截面面积最大?(注:计算中取3)
查看答案和解析>>
科目:高中数学 来源:2017届四川成都市高三理一诊考试数学试卷(解析版) 题型:填空题
我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”。“势”即是高,“幂”是面积。意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等。类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为1的梯形,且当实数取上的任意值时,直线被图1和图2所截得的两线段长始终相等,则图1的面积为 ___________.
查看答案和解析>>
科目:高中数学 来源:2017届四川成都市高三理一诊考试数学试卷(解析版) 题型:选择题
如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2017届广西柳州市高三文10月模拟考试数学试卷(解析版) 题型:解答题
中国柳州从2011年起每年国庆期间都举办一届国际水上狂欢节,到2016年已举办了六届,旅游部门统计在每届水上狂欢节期间,吸引了不少外地游客到柳州,这将极大地推进柳州的旅游业的发展,现将前五届水上狂欢节期间外地游客到柳州的人数统计如下表:
年份 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 |
水上狂欢节届编号 | 1 | 2 | 3 | 4 | 5 |
外地游客人数(单位:十万) | 0.6 | 0.8 | 0.9 | 1.2 | 1.5 |
(1)求关于的线性回归方程;
(2)利用(1)中的线性回归方程,预测2017年第7届柳州国际水上狂欢节期间外地游客到柳州的人数.
参考公式:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com