精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在上的奇函数,且.

1)求的解析式;

2)判断的单调性,并证明你的结论;

3)解不等式 .

【答案】1;(2上单调递增,证明见解析;(3.

【解析】

1)根据题意,由奇函数的性质可得,又由,可得的值,代入函数的解析式即可得答案;
2)设,由作差法分析的大小关系,结合函数单调性的定义,即可得结论;
3)利用函数的奇偶性以及单调性,可以将转化为,解可得的取值范围,即可得答案.

1)∵上的奇函数,

又∵

,解得

2上单调递增,

证明:任意取,且,则

,即

上单调递增;

3)∵

易知上的奇函数,

又由(2)知上的增函数,

解得

∴不等式的解集为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若方程只有一解求实数的取值范围

(Ⅱ)设函数若对任意正实数 恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数.

1)求函数的解析式;

2)求不等式的解集;

3)若上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为a的正方体ABCDA1B1C1D1中,MN分别是AA1D1C1的中点,过DMN三点的平面与正方体的下底面A1B1C1D1相交于直线l.

1)画出直线l的位置,并简单指出作图依据;

2)设lA1B1P,求线段PB1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由实数组成的集合A具有如下性质:若,那么

1)试问集合A能否恰有两个元素且?若能,求出所有满足条件的集合A;若不能,请说明理由;

2)是否存在一个含有元素0的三元素集合A;若存在请求出集合,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,的中点,.

(1)求证:平面

(2)若异面直线所成角的余弦值为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,当时,

(1)求上的解析式;

(2)若,函数,是否存在实数使得的最小值为,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为D的函数,如果存在区间,同时满足:内是单调函数;当定义域是时,的值域也是,则称是该函数的优美区间”.

1)求证:是函数的一个优美区间”.

2)求证:函数不存在优美区间”.

3)已知函数)有优美区间,当a变化时,求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为vablog3 (其中ab是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.

(1)求出ab的值;

(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?

查看答案和解析>>

同步练习册答案