精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在上的函数,满足.

1)证明:2是函数的周期;

2)当时,,求时的解析式,并写出)时的解析式;

3)对于(2)中的函数,若关于x的方程恰好有20个解,求实数a的取值范围.

【答案】1)证明见解析 2)当时,,当)时, 3

【解析】

1)根据,代换得到得到证明.

2)当时,,则,代入化简得到答案.

3)画出函数图像,根据函数的图像与直线的交点个数得到答案.

1)因为,所以

所以2是函数的周期.

2)当时,,则

,即,解得.

所以当时,,所以

的周期为2,当)时,

3)作出函数的图像,则方程解的个数就是函数的图像与直线的交点个数.

,则)都是方程的解,不合题意.

,则是方程的解,要使方程恰好有20个解,在区间上,9个周期,每个周期有2个解,在区间上有且仅有一个解.

解得,.,同理可得.

综上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,如果对于定义域内的任意实数,对于给定的非零常数,总存在非零常数,恒有成立,则称函数上的级类增周期函数,周期为,若恒有成立,则称函数上的级类周期函数,周期为

1)已知函数上的周期为12级类增周期函数,求实数的取值范围;

2)已知上的级类周期函数,且上的单调增函数,当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线上的两点,线段的中点为,直线不经过坐标原点

1)若直线和直线的斜率都存在且分别为,求证:

2)若双曲线的焦点分别为,点的坐标为,直线的斜率为,求由四点所围成四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,是棱上的一点,平面.

(1)若的中点,证明:平面平面

(2)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是底面边长为的正四棱柱,的交点.

1)若正四棱柱的高与底面边长相等,求二面角的大小(结果用反三角函数值表示);

2)若点到平面的距离为,求正四棱柱的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆上.

1)求椭圆的标准方程;

2)当点在椭圆的图像上运动时,点在曲线上运动,求曲线的轨迹方程,并指出该曲线是什么图形;

3)过椭圆上异于其顶点的任意一点作曲线的两条切线,切点分别为不在坐标轴上),若直线轴,轴上的截距分别为试问:是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意xR,存在函数fx)满足(

A.fcosx)=sin2xB.fsin2x)=sinx

C.fsinx)=sin2xD.fsinx)=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某饼屋进行为期天的五周年店庆活动,现策划两项有奖促销活动,活动一:店庆期间每位顾客一次性消费满元,可得元代金券一张;活动二:活动期间每位顾客每天有一次机会获得一个一元或两元红包.根据前一年该店的销售情况,统计了位顾客一次性消费的金额数(元),频数分布表如下图所示:

一次性消费金额数

人数

以这位顾客一次消费金额数的频率分布代替每位顾客一次消费金额数的概率分布.

1)预计该店每天的客流量为人次,求这次店庆期间,商家每天送出代金券金额数的期望;

2)假设顾客获得一元或两元红包的可能性相等,商家在店庆活动结束后会公布幸运数字,连续元的店庆幸运红包一个.若公布的幸运数字是,求店庆期间一位连续天消费的顾客获得红包金额总数的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)若直线经过曲线的焦点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

同步练习册答案