精英家教网 > 高中数学 > 题目详情
在△ABC中,点D为BC的中点,若AB=
5
,AC=3,则
BC
AD
=(  )
A、1B、2C、3D、4
考点:平面向量数量积的运算,余弦定理
专题:平面向量及应用
分析:利用三角形中线的性质将
AD
BC
分别用
AB
AC
表示,然后进行向量的模的运算即可.
解答: 解:因为在△ABC中,点D为BC的中点,
所以
AD
=
1
2
(
AB
+
AC
)
BC
=
AC
-
AB

因为AB=
5
,AC=3,
所以
BC
AD
=
1
2
(
AC
+
AB
)(
AC
-
AB
)
=
1
2
(
AC
2
-
AB
2
)
=
1
2
×[32-(
5
)2]
=2;
故选B.
点评:本题考查了向量的三角形法则的运用以及向量的乘法的计算,运用了向量的平方与其模的平方相等使问题得到解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明函数f(x)=x+
1
x
在(-1,0)上是减少的.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)+b的图象如图,则f(x)的解析式与S=f(0)+f(1)+f(2)+…+f(2010)的值分别为(  )
A、f(x)=
1
2
sin2πx+1,S=2010
B、f(x)=sin
π
2
x+1,S=2011
1
2
C、f(x)=
1
2
sin
π
2
x+1,S=2010
1
2
D、f(x)=
1
2
sin
π
2
x+1,S=2011

查看答案和解析>>

科目:高中数学 来源: 题型:

到两坐标轴距离相等的点的轨迹方程是(  )
A、y=x
B、x2-y2=0
C、y=-x
D、y=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
2x-1
2x+1
(a>0且a≠1)
(1)求f(x)的定义域和值域;
(2)判断f(x)在定义域上的单调性,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

若3a=0.628,a∈[k,k+1],(k∈Z),则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x2-1)-x,试判断f(x)的单调性并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lnx+x的零点位于区间(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
在(0,+∞)的最小值,并确定取得最小值时的x的值,列表如下:
x0.511.51.71.922.12.22.33457
y8.554.174.054.00544.0054.024.044.354.87.57
请观察表中y随x值变化的特点,完成以下问题:
(1)函数f(x)=x+
4
x
(x>0)在
 
上是单调递减
(2)函数f(x)=x+
4
x
(x>0)在
 
上是单调递增
(3)当x=
 
时,f(x)有最小值为
 

(4)对问题(1)用定义法给予证明.

查看答案和解析>>

同步练习册答案