【题目】已知函数f(x)=x2+m与函数 的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是( )
A.
B. ??
C.
D.[2﹣ln2,2]
【答案】D
【解析】解:由已知,得到方程x2+m=ln +3xm=﹣lnx+3x﹣x2在[ ,2]上有解. 设f(x)=﹣lnx+3x﹣x2 ,
求导得:f′(x)=﹣ +3﹣2x=﹣ =﹣ ,
∵ ≤x≤2,
令f′(x)=0,解得x= 或x=1,
当f′(x)>0时, <x<1函数单调递增,
当f′(x)<0时,1<x<2函数单调减,
∴在x=1有唯一的极值点,
∵f( )=ln2+ ,f(2)=﹣ln2+2,f(x)极大值=f(1)=2,且知f(2)<f( ),
故方程m=﹣lnx+3x﹣x2在[ ,2]上有解等价于2﹣ln2≤m≤2.
从而m的取值范围为[2﹣ln2,2].
故选:D.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆E: (a>b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.
(Ⅰ)当k=﹣ ,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;
(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设M、N、T是椭圆 上三个点,M、N在直线x=8上的摄影分别为M1、N1 .
(Ⅰ)若直线MN过原点O,直线MT、NT斜率分别为k1 , k2 , 求证k1k2为定值.
(Ⅱ)若M、N不是椭圆长轴的端点,点L坐标为(3,0),△M1N1L与△MNL面积之比为5,求MN中点K的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为 (α为参数),将曲线C1上所有点的横坐标缩短为原来的 ,纵坐标缩短为原来的 ,得到曲线C2 , 在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为4ρsin(θ+ )+ =0.
(1)求曲线C2的极坐标方程及直线l与曲线C2交点的极坐标;
(2)设点P为曲线C1上的任意一点,求点P到直线l的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直三棱柱ABC﹣A1B1C1的底面为正三角形,E,F分别是A1C1 , B1C1上的点,且满足A1E=EC1 , B1F=3FC1 .
(1)求证:平面AEF⊥平面BB1C1C;
(2)设直三棱柱ABC﹣A1B1C1的棱长均相等,求二面角C1﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线l过定点P(1,1),且倾斜角为 ,以坐标原点为极点,x轴的正半轴为极轴的坐标系中,曲线C的极坐标方程为 .
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于不同的两点A,B,求|AB|及|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的是自动通风设施该设施的下部ABCD是等腰梯形,其中米,高米,米上部CmD是个半圆,固定点E为CD的中点是由电脑控制其形状变化的三角通风窗阴影部分均不通风,MN是可以沿设施边框上下滑动且始终保持和CD平行的伸缩横杆.
设MN与AB之间的距离为x米,试将三角通风窗的通风面积平方米表示成关于x的函数;
当MN与AB之间的距离为多少米时,三角通风窗的通风面积最大?求出这个最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com