精英家教网 > 高中数学 > 题目详情
3.已知a,b是实数,若圆(x-1)2+(y-1)2=1与直线(a+1)x+(b+1)y-2=0相切,则a+b的取值范围是(  )
A.[2-2$\sqrt{2}$,2+$\sqrt{2}$]B.(-∞,2-2$\sqrt{2}$]∪[2+2$\sqrt{2}$,+∞)C.(-∞,-2$\sqrt{2}$]∪[2$\sqrt{2}$,+∞)D.(-∞,-2]∪[2+2$\sqrt{2}$,+∞)

分析 圆(x-1)2+(y-1)2=1与直线(a+1)x+(b+1)y-2=0相切,圆心到直线的距离d=$\frac{|a+b|}{\sqrt{(a+1)^{2}+(b+1)^{2}}}$=1,即ab=a+b+1,再结合基本不等式,即可得出结论.

解答 解:∵圆(x-1)2+(y-1)2=1与直线(a+1)x+(b+1)y-2=0相切,
∴圆心到直线的距离d=$\frac{|a+b|}{\sqrt{(a+1)^{2}+(b+1)^{2}}}$=1,
即ab=a+b+1,
∴a+b+1≤$\frac{(a+b)^{2}}{4}$
∴a+b$≤2-2\sqrt{2}$或a+b≥2+2$\sqrt{2}$,
故选B.

点评 本题考查直线与圆的位置关系的运用,考查基本不等式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.过点(1,2),且与原点距离最大的直线方程是(  )
A.x+2y-5=0B.2x+y-4=0C.x+3y-7=0D.x-2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{5}}}{5}$,短半轴的长为2.
(1)求椭圆C的方程;
(2)若椭圆C的左焦点为F,上顶点为A,与直线FA平行的直线l与椭圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{{a}^{2}+{c}^{2}-{b}^{2}}$=$\frac{2sinA-sinC}{sinC}$,且b=4.
(1)求角B;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知不等式ln(x+1)-1≤ax+b对一切x>-1都成立,则$\frac{b}{a}$的最小值是1-e-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△OAB中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OB}$,AD与BC交于点M,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OM}$;
(2)在线段AC上取一点E,在线段BD上取一点F,使EF过M点,设$\overrightarrow{OE}$=p$\overrightarrow{OA}$,$\overrightarrow{OF}$=q$\overrightarrow{OB}$,求证:$\frac{1}{7p}$+$\frac{3}{7q}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+3|+|x-2|
(Ⅰ)若?x∈R,f(x)≥6a-a2恒成立,求实数a的取值范围
(Ⅱ)求函数y=f(x)的图象与直线y=9围成的封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=t|x-t|(t≠0)在区间(-∞,-1]上单调递增,则t的取值范围是(  )
A.(-∞,-1]B.[-1,0)C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将正方形ABCD沿对角线AC折起成直二面角,则直线BD和平面ABC所成的角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案