精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线上任意一点到其焦点的距离的最小值为1.为抛物线上的两动点(不重合且均异于原点),为坐标原点,直线的倾斜角分别为.

1)求抛物线方程;

2)若,求证直线过定点;

3)若为定值),探求直线是否过定点,并说明理由.

【答案】1;(2)证明见解析;(3)是,理由见解析.

【解析】

1)根据抛物线的定义结合已知求出的值,最后写出抛物线的标准方程;

2)设出直线的方程与抛物线方程联立,由已知可以得到,结合平面向量数量积坐标运算公式、一元二次方程根与系数关系,最后得到直线过定点;

3)根据(2)中的特例,再结合,根据两角和的正切公式、直线倾斜角和斜率的关系,最后能求出直线所过定点.

1)设为抛物线上任一点,为焦点,则

故抛物线方程.

2)设,联立

,即

.

得已,从而直线过定点.

3)由(2),

时,

,故

于是直线经过定点.

时,

.

故直线,即为

故直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线Cy2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(Ⅰ)当曲线在点处的切线与直线垂直时,判断函数在区间上的单调性;

(Ⅱ)若函数在定义域内有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点中点,底面为梯形,.

(1)证明:平面

(2)若四棱锥的体积为4,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,点上.

(1)求椭圆的方程;

(2)若直线与椭圆相交于两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教材曾有介绍:圆上的点处的切线方程为.我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用.已知,直线与椭圆有且只有一个公共点.

1)求的值

2)设为坐标原点,过椭圆上的两点分别作该椭圆的两条切线,且交于点.变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,且椭圆的一个焦点在圆上.

(1)求椭圆的方程;

(2)已知椭圆的焦距小于,过椭圆的左焦点的直线与椭圆相交于两点,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程是

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

(Ⅱ)设直线与曲线相交于两点,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是甲、乙、丙三个企业的产品成本(单位:万元)及其构成比例,则下列判断正确的是(  )

A. 乙企业支付的工资所占成本的比重在三个企业中最大

B. 由于丙企业生产规模大,所以它的其他费用开支所占成本的比重也最大

C. 甲企业本着勤俭创业的原则,将其他费用支出降到了最低点

D. 乙企业用于工资和其他费用支出额比甲丙都高

查看答案和解析>>

同步练习册答案