精英家教网 > 高中数学 > 题目详情
已知三棱锥S-ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,则当球的表面积为400π时,点O到平面ABC的距离为(  )
分析:根据题意可得:球的半径R=10,并且三棱锥顶点S在底面ABC内的摄影D是△ABC的外心,由∠ACB=90°,可得D是AB的中点,所以点O到ABC的距离h=OD.再利用三角形的有关性质求出答案即可.
解答:解:设球半径为R,
因为球的表面积为400π,所以球的半径R=10.
因为SA=SB=SC,所以三棱锥顶点S在底面ABC内的摄影D是△ABC的外心,
又因为∠ACB=90°,
所以D是AB的中点,
所以点O到ABC的距离h=OD.
因为SA=SB=AB,所以可得△SAB是等边三角形,
所以点O是三角形△SAB的外心,即三角形的中心.
又因为其外接圆的半径为10,所以OD=5.
故选B.
点评:本题考查的知识点是空间点、线、面之间的距离计算,解决此类问题的一般方法是根据球心距d,球半径R,截面圆半径r,构造直角三角形,满足勾股定理,是与球相关的距离问题常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=
2
r
,则球的体积与三棱锥体积之比是(  )
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2;则此棱锥的体积为
2
6
2
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,若点P到S、A、B、C这四点的距离都是同一个值,则这个值是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)已知三棱锥S-ABC的所有顶点都在以O为球心的球面上,△ABC是边长为1的正三角形,SC为球O的直径,若三棱锥S-ABC的体积为
2
6
,则球O的表面积为

查看答案和解析>>

同步练习册答案