精英家教网 > 高中数学 > 题目详情
7.下列条件,能使sinα+cossα>1成立的是(  )
A.0<α<πB.0<α<$\frac{3π}{2}$C.0<α<$\frac{π}{2}$D.$\frac{π}{4}$≤α≤$\frac{π}{2}$

分析 由条件根据同角三角函数的基本关系,三角函数在各个象限中的符号,可得α是第一或第三象限角,从而得出结论.

解答 解:由sinα+cossα>1,可得1+2sinαcosα>1,求得sinαcosα>0,又sinα+cossα>1,
故sinα和cosα 同号且均为正值,故α是第一象限的角,
故选:C.

点评 本题主要考查同角三角函数的基本关系,三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.解答题
(1)已知椭圆经过点(2,$\sqrt{2}$)和点(-1,$\frac{\sqrt{14}}{2}$),求它的标准方程.
(2)求经过点(2,-3),且与椭圆9x2+4y2=36有共同焦点的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若(a+1)2>(a+1)3(a≠-1),则实数a的取值范围是a<0且a≠-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.正方形ABCD的对角线AC在直线x+2y-1=0上,点A,B的坐标分别为A(-5,3),B(m,0)(m>-5).
(1)求实数m的值;
(2)求点C、D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设命题p:?x0∈R,x02+2ax0-a=0,命题q:?x∈R,ax2+4x+a≥-2x2+1.
(1)如果命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围;
(2)如果命题“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若定义运算a⊕b=$\left\{\begin{array}{l}{a,a<b}\\{b,a≥b}\end{array}\right.$,则函数f(x)=6x⊕6-x的值域是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明:若函数y=f(x),x∈R满足f(x)=f(x-a)+f(x+a)(常数a∈R+),则f(x)是周期函数,且6a是它的一个周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)是(-∞,+∞)上是严格单调增函数,a、b∈R,写出命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”的逆命题、否命题和逆否命题,并判断真假,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.全集I={0,1,2,3,4,5,6,7,8,9},A={1,2,3}B={2,5,6,7},则A∪B={1,2,3,5,6,7},A∩B={2},(∁IA)∩B={5,6,7}.

查看答案和解析>>

同步练习册答案