精英家教网 > 高中数学 > 题目详情
2
+
3
3
-
2
,两数的等比中项是(  )
分析:直接利用等比中项的概念列式计算.
解答:解:设
2
+
3
3
-
2
的等比中项为a,
a2=(
2
+
3
)(
3
-
2
)
=(
3
)2-(
2
)2=1

∴a=±1.
故选:C.
点评:本题考查了等比数列的通项公式,考查了等比中项的概念,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日    期 12月1日 12月2日 12月3日 12月4日 12月5日
温差x(°C) 10 11 13 12 8
发芽数y(颗) 23 25 30 26 16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是不相邻2天数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
y
=bx+a

参考公式:
b
=
n
i=1
(xi-
.
x
)  (yi-
.
y
n
i=1
(xi-
.
x
2
=
n
i=1
xi yi-n 
.
x
.
y
n
i=1
x
2
i
-n
-2
x
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人)另外750名工人参加过长期培训(称为B类工人).现用分层抽样的方法(按A类、B类分两层)从该工厂的工人中抽取100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).从A类工人中的抽查结果和从B类工人中的抽查结果如下表1和表2.
表1
生产能力分组 [110,120) [120,130) [130,140) [140,150)
人数 8 x 3 2
表2
生产能力分组 [110,120) [120,130) [130,140) [140,150)
人数 6 y 27 18
(Ⅰ)先确定x、y的值,再补齐下列频率分布直方图.

(Ⅱ)完成下面2×2列联表,并回答能否有99.9%的把握认为“工人的生产能力与工人的类别有关”?
生产能力分组 [110,130) [130,150) 合计
A类工人
B类工人
合计
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0,05 0.025 0.01 0.005
k 3.841 5.024 6.635 7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙二名射箭运动员在某次测试中,两人的测试成绩如下表
甲的成绩
环数ξ1 7 8 9 10
概率 0.3 0.2 0.2 m
乙的成绩
环数ξ2 7 8 9 10
概率 0.2 0.3 0.3 0.2
(1)求m的值.
(2)用击中环数的期望与方差比较两名射手的射击水平.
(3)若运动员乙欲射中10环,预计将连续射击几发.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)在某医学实验中,某实验小组为了分析某种药物用药量与血液中某种抗体水平的关系,选取六只实验动物进行血检,得到如下资料:
动物编号 1 2 3 4 5 6
用药量x(单位) 1 3 4 5 6 8
抗体指标y
(单位)
3.4 3.7 3.8 4.0 4.2 4.3
记s为抗体指标标准差,若抗体指标落在(
.
y
-s,
.
y
+s)内则称该动物为有效动物,否则称为无效动物.研究方案规定先从六只动物中选取两只,用剩下的四只动物的数据求线性回归方程,再对被选取的两只动物数据进行检验.
(Ⅰ)设选取的两只动物中有效动物的只数为ξ,求随机变量ξ的分布列与期望;
(Ⅱ)若选取的是编号为1和6的两只动物,且利用剩余四只动物的数据求出y关于x的线性回归方程为
y
=0.17x+a,试求出a的值;
(Ⅲ)若根据回归方程估计出的1号和6号动物的抗体指标数据与检验结果误差都不超过抗体指标标准差则认为得到的线性回归方程是可靠的,试判断(Ⅱ)中所得线性回归方程是否可靠.

查看答案和解析>>

同步练习册答案