精英家教网 > 高中数学 > 题目详情

【题目】若x1 , x2 , …,x2017的平均数为4,标准差为3,且yi=﹣3(xi﹣2),i=x1 , x2 , …,x2017 , 则新数据y1 , y2 , …,y2017的平均数和标准差分别为(
A.﹣6 9
B.﹣6 27
C.﹣12 9
D.﹣12 27

【答案】A
【解析】解:x1,x2,…,x2017的平均数为 =4,标准差为s=3,

且yi=﹣3(xi﹣2),i=x1,x2,…,x2017

∴新数据y1,y2,…,y2017的平均数是 =﹣3( ﹣2)=﹣3×(4﹣2)=﹣6;

方差为(﹣3)2s2=9×32=81,标准差为 =9;

综上,新数据的平均数和标准差分别为﹣6和9.

故选:A.

【考点精析】解答此题的关键在于理解极差、方差与标准差的相关知识,掌握标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点(a,b)是区域 内的任意一点,则使函数f(x)=ax2﹣2bx+3在区间[ ,+∞)上是增函数的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+φ)+2sin2x(|φ|< )的图象过点( ).
(1)求函数f(x)在[0, ]的最小值;
(2)设角C为锐角,△ABC的内角A、B、C的对边长分别为a、b、c,若x=C是曲线y=f(x)的一条对称轴,且△ABC的面积为2 ,a+b=6,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(Ⅰ)讨论函数f(x)= ex的单调性,并证明当x>0时,(x﹣2)ex+x+2>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)= (x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某城镇由6条东西方向的街道和7条南北方向的街道组成,其中有一个池塘,街道在此变成一个菱形的环池大道.现要从城镇的A处走到B处,使所走的路程最短,最多可以有种不同的走法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,设圆的方程为(x+2 2+y2=48,F1是圆心,F2(2 ,0)是圆内一点,E为圆周上任一点,线EF2的垂直平分线EF1的连线交于P点,设动点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线l(与x轴不重合)与曲线C交于A、B两点,与x轴交于点M.
(i)是否存在定点M,使得 + 为定值,若存在,求出点M坐标及定值;若不存在,请说明理由;
(ii)在满足(i)的条件下,连接并延长AO交曲线C于点Q,试求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+2ax.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,+∞)上的最小值为0,求a的值;
(3)若对于任意x≥0,f(x)≥ex恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|
(Ⅰ)解不等式f(2x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,a≠0,求证:

查看答案和解析>>

同步练习册答案