精英家教网 > 高中数学 > 题目详情

 

(Ⅰ)求

(Ⅱ)当时,恒有成立,求t的取值范围;

(Ⅲ)当0<a≤时,试比较f(1)+f(2)+…+f(n)与的大小,并说明理由.

 

 

【答案】

 解:(1)由题意得:ax>0

g(x)=x∈(-∞,-1)∪(1,+∞)……………………3分

(2) 由得  

①当a>1时,>0

又因为x∈[2,6],所以0<t<(x-1)2(7-x)

h(x)=(x-1)2(7-x)=-x3+9xx+7, x∈[2,6]

h'(x)=-3x2+18x-15=-3(x-1)(x-5)

列表如下:

x

2

(2,5)

5

(5,6)

6

h'(x)

 

0

 

h(x)

5

极大值32

25

所以h(x)最小值=5,

所以0<t<5

②当0<a<1时,0<

又因为x∈[2,6],所以t>(x-1)2(7-x)>0

h(x)=(x-1)2(7-x)=-x3+9xx+7, x∈[2,6]

由①知h(x)最大值=32, x∈[2,6]

所以t>32

综上,当a>1时,0<t<5;当0<a<1时,t>32.……………………9分

(3)设a,则p≥1

n=1时,f(1)=1+≤3<5  

n≥2时

k≥2,kN *

f(k)=

所以f(k)≤1+=1+=1+

从而f(2)+f(3)+……+f(n)≤n-1+n+1

所以f(1)+f(2)+f(3)+……+f(n)<f(1)+n+1≤n+4

综上,总有f(1)+f(2)+f(3)+……+f(n)<n+4……………………14分

 

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数集A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),aiaj
ajai
两数中至少有一个属于A.
(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(2)求a1的值;当n=3时,数列a1,a2,a3是否成等比数列,试说明理由;
(3)由(2)及通过对A的探究,试写出关于数列a1,a2,…,an的一个真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 f(θ)=a sinθ+b cosθ,θ∈[0,π],且1与2cos 2 
θ
2
的等差中项大于1与 sin 2 
θ
2
的等比中项的平方.
求:(1)当a=4,b=3时,f(θ) 的最大值及相应的 θ 值;
(2)当a>b>0时,f(θ) 的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=aln(x-1),g(x)=x2+bx,F(x)=f(x+1)-g(x),其中a,b∈R.
(Ⅰ)若y=f(x)与y=g(x)的图象在交点(2,k)处的切线互相垂直,求a,b的值;
(Ⅱ)若x=2是函数F(x)的一个极值点,x0和1是F(x)的两个零点,且x0∈(n,n+1)n∈N,求n;
(Ⅲ)当b=a-2时,若x1,x2是F(x)的两个极值点,当|x1-x2|>1时,求证:|F(x1)-F(x)|>3-4ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已经函数f(x)=2sinxcosx+sin2x-cos2x.
(1)求f(x)递增区间;
(2)求f(x)当x∈[0,
π2
]时的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
3
sinx,cosx),
b
=(cosx,-cosx).
(Ⅰ)当x∈[
π
3
12
]
时,
a
b
+
1
2
=
4
5
,求cos2x;
(Ⅱ)当[
12
13π
12
)
时,关于x的方程
a
b
+
1
2
=m有且只有一个实根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案