精英家教网 > 高中数学 > 题目详情

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(Ⅰ)求抛物线的方程;

(Ⅱ)当的角平分线垂直轴时,求直线的斜率;

(Ⅲ)若直线轴上的截距为,求的最小值.

 

【答案】

(1);(2);(3).

【解析】

试题分析:本题考查抛物线、圆的标准方程以及直线与抛物线、圆的位置关系,突出解析几何的基本思想和方法的考查:如数形结合思想、坐标化方法等.第一问,据点到准线的距离为,直接列式求得,得到抛物线的标准方程;第二问,据条件的角平分线为,即轴,得,而关于对称,所以,利用两点斜率公式代入得,所以求得;第三问,先求直线的方程,再求的方程,令,可得到,利用函数的单调性求函数的最值.

试题解析:(1)∵点到抛物线的距离为

,即抛物线的方程为.         2分

(2)法一:∵当的角平分线垂直轴时,点,∴

,  ∴

,∴.            6分

法二:∵当的角平分线垂直轴时,点,∴,可得,∴直线的方程为

联立方程组,得

   ∴

同理可得,∴.              6分

(3)法一:设,∵,∴

可得,直线的方程为

同理,直线的方程为

∴直线的方程为

,可得

∵关于的函数在单调递增,   ∴.               12分

法二:设点

为圆心,为半径的圆方程为,      ①

方程:. ②

① ②得:

直线的方程为

时,直线轴上的截距

∵关于的函数在单调递增,   ∴.             12分

考点:1.点线距离;2.圆外一点引两条切线的性质.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年河北省高三上学期四调考试文科数学试卷(解析版) 题型:解答题

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;

(2)当的角平分线垂直轴时,求直线的斜率;

(3)若直线轴上的截距为,求的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省德州市高三上学期1月月考考试理科数学试卷(解析版) 题型:解答题

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;

(2)当的角平分线垂直轴时,求直线的斜率;

(3)若直线轴上的截距为,求的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三第一次高考仿真测试文科数学试卷(解析版) 题型:解答题

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线于两点,圆心点到抛物线准线的距离为

(Ⅰ)求抛物线的方程;

(Ⅱ)当的角平分线垂直轴时,求直线的斜率;

(Ⅲ)若直线轴上的截距为,求的最小值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线和⊙,过抛物线上一点

作两条直线与⊙相切于两点,分别交抛物线为EF两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;

(2)当的角平分线垂直轴时,求直线的斜率.

                                                                  

查看答案和解析>>

同步练习册答案