精英家教网 > 高中数学 > 题目详情
14.用数学归纳法证明:1+3+5+…+(2n-1)=n2(n∈N+

分析 首先证明当n=1时等式成立,再假设n=k时等式成立,得到等式1+3+5+…+(2k-1)=k2,下面证明当n=k+1时等式左边=1+3+5+…+(2k-1)+(2k+1),根据前面的假设化简即可得到结果,最后得到结论.

解答 证明:(1)当n=1时,左边=1,右边=1,
∴左边=右边
(2)假设n=k时等式成立,即1+3+5+…+(2k-1)=k2
当n=k+1时,等式左边=1+3+5+…+(2k-1)+(2k+1)=k2+(2k+1)=(k+1)2
综上(1)(2)可知1+3+5+…+(2n-1)=n2对于任意的正整数成立.

点评 本题考查用数学归纳法证明等式成立,用数学归纳法证明问题的步骤是:第一步验证当n=n0时命题成立,第二步假设当n=k时命题成立,那么再证明当n=k+1时命题也成立.本题解题的关键是利用第二步假设中结论证明当n=k+1时成立,本题是一个中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.有一个几何体的三视图及其尺寸如下(单位:cm),其侧视图和主视图是全等的三角形,则该几何体的表面积为(  )
A.12cm2B.15πcm2C.24πcm2D.36πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a∈R,命题“?x∈(0,+∞),等式lnx=a成立”的否定形式是(  )
A.?x∈(0,+∞),等式lnx=a不成立B.?x∈(-∞,0),等式lnx=a不成立
C.?x0∈(0,+∞),等式lnx0=a不成立D.?x0∈(-∞,0),等式lnx0=a不成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,-4),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-6B.$\sqrt{10}$C.$\sqrt{5}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知M是由满足下述条件的函数构成的集合:对任意f(x)∈M,①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.
(Ⅰ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在x0∈(m,n),使得等式f(n)-f(m)=(n-m)f′(x0)成立.试用这一性质证明:方程f(x)-x=0有且只有一个实数根;
(Ⅱ)对任意f(x)∈M,且x∈(a,b),求证:对于f(x)定义域中任意的x1,x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.2B.1C.1或2D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2sin2x-1,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于3p,则直线MF的斜率为(  )
A.±$\sqrt{5}$B.±1C.+$\frac{5}{2}$D.±$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在公差为d的等差数列{an}中,“d>1”是“{an}是递增数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案