精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为(

A.B.C.D.1

【答案】B

【解析】

过点E,垂足为H,过H,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.,将表示成关于的函数,再求函数的最值,即可得答案.

过点E,垂足为H,过H,垂足为F,连接EF.

因为平面平面ABCD,所以平面ABCD

所以.

因为底面ABCD是边长为1的正方形,,所以.

因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.

易证平面平面ABE

所以点H到平面ABE的距离,即为HEF的距离.

不妨设,则.

因为,所以

所以,当时,等号成立.

此时EHED重合,所以.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】本小题满分13分如图在直角坐标系的顶点是原点始边与轴正半轴重合终边交单位圆于点将角的终边按逆时针方向旋转交单位圆于点

1

2分别过轴的垂线垂足依次为的面积为的面积为求角的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数且 )曲线的参数方程为为参数,且),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为: ,曲线的极坐标方程为.

(1)求的交点到极点的距离;

(2)设交于点,交于点,当上变化时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxax12+x2exa0).

1)讨论函数fx)的单调性;

2)若关于x的方程fxa0存在3个不相等的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为非零常数.

讨论的极值点个数,并说明理由;

证明:在区间内有且仅有1个零点;的极值点,的零点且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系xOy的原点为极坐标系的极点,x轴的正半轴为极轴.已知曲线的极坐标方程为P上一动点,Q的轨迹为.

1)求曲线的极坐标方程,并化为直角坐标方程,

2)若点,直线l的参数方程为t为参数),直线l与曲线的交点为AB,当取最小值时,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业打算处理一批产品,这些产品每箱100件,以箱为单位销售.已知这批产品中每箱出现的废品率只有或者两种可能,两种可能对应的概率均为0.5.假设该产品正品每件市场价格为100元,废品不值钱.现处理价格为每箱8400元,遇到废品不予更换.以一箱产品中正品的价格期望值作为决策依据.

1)在不开箱检验的情况下,判断是否可以购买;

2)现允许开箱,有放回地随机从一箱中抽取2件产品进行检验.

①若此箱出现的废品率为,记抽到的废品数为,求的分布列和数学期望;

②若已发现在抽取检验的2件产品中,其中恰有一件是废品,判断是否可以购买.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,右焦点到直线的距离为.

1)求椭圆的标准方程;

2)定义两点所在直线的斜率,若四边形为椭圆的内接四边形,且相交于原点,且,求证:.

查看答案和解析>>

同步练习册答案