【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )
A.16
B.10
C.26
D.9
科目:高中数学 来源: 题型:
【题目】等比数列{an}中,已知a1=1,a4=8,若a3 , a5分别为等差数列{bn}的第4项和第16项.
(1)求数列{an}﹑{bn}的通项公式;
(2)令cn=anbn , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影O为AC的中点,A1O=2,AB⊥BC,AB=BC= 点P在线段A1B上,且cos∠PAO= ,则直线AP与平面A1AC所成角的正弦值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m,n,s,t∈R+ , m+n=2, + =9,其中m,n是常数,当s+t取最小值 时,m,n对应的点(m,n)是椭圆 =1的一条弦的中点,则此弦所在的直线方程 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率为 ,左,右焦点分别是F1 , F2 , 以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上. (Ⅰ)求椭圆C的方程;
(Ⅱ)线段PQ是椭圆C过点F2的弦,且 =λ .
(i)求△PF1Q的周长;
(ii)求△PF1Q内切圆面积的最大值,并求取得最大值时实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;
(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为[0,e]的函数f(x)同时满足: ①对于任意的x∈[0,e],总有f(x)≥0;
②f(e)=e;
③若x1≥0,x2≥0,x1+x2≤e,则恒有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)证明:不等式f(x)≤e对任意x∈[0,e]恒成立;
(3)若对于任意x∈[0,e],总有4f2(x)﹣4(2e﹣a)f(x)+4e2﹣4ea+1≥0,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】不等式x2﹣4x>2ax+a对一切实数x都成立,则实数a的取值范围是( )
A.(1,4)
B.(﹣4,﹣1)
C.(﹣∞,﹣4)∪(﹣1,+∞)
D.(﹣∞,1)∪(4,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com