精英家教网 > 高中数学 > 题目详情
△ABC的内角A、B、C的对边分别为a、b、c.已知A-C=90°,a+c=
2
b,求C.
分析:由三角形的内角和公式可得 B=π-(A+C)=90°-2C,根据正弦定理有:sinA+sinC=
2
sinB
,化简可得cos(C+45°)=
1
2
,由此求出锐角C的大小.
解答:解:由A-C=90°,得A=C+90°,B=π-(A+C)=90°-2C(事实上0°<C<45°),
由a+c=
2
b,根据正弦定理有:sinA+sinC=
2
sinB
,∴sin(C+90°)+sinC=
2
sin(90°-2C),
即cosC+sinC=
2
coc2C=
2
(cos2C-sin2C)=
2
(cosC+sinC)(cosC-sinC),
∵cosC+sinC≠0,∴cosC-sinC=
2
cos(C+45°)=
2
2
,cos(C+45°)=
1
2
,C+45°=60°,∴C=15°.
点评:本题考查正弦定理的应用,三角形的内角和公式,判断三角形的形状的方法,得到cos(C+45°)=
1
2
,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
14

(Ⅰ)求△ABC的周长;
(Ⅱ)求cos(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积S=
3
4
(c2-a2-b2)

(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=
3
,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)设函数f(x)=sinx+cos(x+
π
6
),x∈R
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,且a=
3
2
b
,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A、B、C的对边分别为a、b、c,三边长a、b、c成等比数列,且a2=c2+ac-bc,则
asinB
b
的值为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2-3c2=0,则角C的大小是
π-arccos
1
3
π-arccos
1
3

查看答案和解析>>

同步练习册答案