精英家教网 > 高中数学 > 题目详情

观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)= (   )

A.f(x)              B.-f(x)             C.g(x)              D.-g(x)

 

【答案】

D

【解析】

试题分析:

解:由(x2)'=2x中,原函数为偶函数,导函数为奇函数;(x4)'=4x3中,原函数为偶函数,导函数为奇函数;(cosx)'=-sinx中,原函数为偶函数,导函数为奇函数;…我们可以推断,偶函数的导函数为奇函数.若定义在R上的函数f(x)满足f(-x)=f(x),则函数f(x)为偶函数,又∵g(x)为f(x)的导函数,则g(x)奇函数,故g(-x)+g(x)=0,故选D.

考点:归纳推理

点评:本题考查的知识点是归纳推理,及函数奇偶性的性质,其中根据已知中原函数与导函数奇偶性的关系,得到结论是解答本题的关键.

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年河北省邢台一中高二下学期第二次月考理科数学试卷(带解析) 题型:单选题

观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)= (   )

A.f(x)B.-f(x)C.g(x)D.-g(x)

查看答案和解析>>

科目:高中数学 来源:2013届内蒙古赤峰市高二下学期期末考试文科数学试卷(解析版) 题型:选择题

观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)= (  )

A.f(x)       B.-f(x)       C.g(x)      D.-g(x)

 

查看答案和解析>>

科目:高中数学 来源:2011--2012学年吉林省高二下学期期中文科数学试卷(解析版) 题型:选择题

 观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=(    )

A.f(x)             B.-f(x)

  C.g(x)            D.-g(x)

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省杭州市萧山五校高二下期中理科数学试卷(解析版) 题型:选择题

观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)= (    )

A.f(x)            B.-f(x)         C.g(x)            D.-g(x)

 

查看答案和解析>>

同步练习册答案