精英家教网 > 高中数学 > 题目详情
14.下列各组向量中不平行的是(  )
A.$\overrightarrow{a}$=(1,2,-2),$\overrightarrow{b}$=(-2,-4,4)B.$\overrightarrow{c}$=(1,0,0),$\overrightarrow{d}$=(-3,0,0)
C.$\overrightarrow{e}$=(2,3,0),$\overrightarrow{f}$=(0,0,0)D.$\overrightarrow{g}$=(-2,3,5)$\overrightarrow{h}$=(16,-24,40)

分析 根据平行向量(共线向量)的定义,对选项中的两个向量进行判断即可.

解答 解:对于A,有$\overrightarrow{b}$=-2$\overrightarrow{a}$,∴$\overrightarrow{a}$与$\overrightarrow{b}$是平行向量;
对于B,有$\overrightarrow{d}$=-3$\overrightarrow{c}$,∴$\overrightarrow{c}$与$\overrightarrow{d}$是平行向量;
对于C,$\overrightarrow{f}$是零向量,与$\overrightarrow{e}$是平行向量;
对于D,不满足$\overrightarrow{g}$=λ$\overrightarrow{h}$,∴$\overrightarrow{g}$与$\overrightarrow{h}$不是平行向量.
故选:D.

点评 本题考查了判断两个向量是否为平行向量的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F(c,0),一条渐近线为l,圆(x-c)2+y2=c2截直线l所得弦长为2$\sqrt{2}$,则该双曲线的实轴长为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{cosx}{1+sinx}$=$\frac{1}{2}$,求$\frac{sinx-1}{cosx}$=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知E、F、G分别是棱长为2的正方体ABCD-A1B1C1D1的棱AA1、CC1、DD1的中点.
(1)判断多面体EGD1BCF是否是棱柱,并求它的体积;
(2)求证:平面EBFD1⊥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$=(1,-2,1),$\overrightarrow{a}$+$\overrightarrow{b}$=(-1,2,-1),则$\overrightarrow{b}$等于(  )
A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\sqrt{lo{g}_{\frac{1}{2}}(2-{x}^{2})}$的定义域是{x|1≤x<$\sqrt{2}$或-$\sqrt{2}$<x≤-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知偶函数f(x)在(-∞,0]上单调递减,f(-1)=0,若f(log2x)<0,则x的取值范围是(  )
A.($\frac{1}{2}$,2)B.(-∞,$\frac{1}{2}$)∪(2,+∞)C.($\frac{1}{2}$,1)∪(2,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lg($\frac{20}{x+10}$+a)为奇函数.
(I)求实数a的值;
(II)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=\left\{{\begin{array}{l}{x+1,}&{0≤x<1}\\{{2^x}-\frac{1}{2}}&{x≥1}\end{array}}\right.$,设a>b≥0,若f(a)=f(b),则b的取值范围是$[{\frac{1}{2},1})$.

查看答案和解析>>

同步练习册答案