精英家教网 > 高中数学 > 题目详情
11.如图所示,扇形OPQ的半径为2,圆心角为$\frac{π}{3}$,C是扇形弧上的动点,四边形ABCD是扇形的内接矩形,则SABCD的最大值是(  )
A.$\frac{2\sqrt{3}}{3}$B.2$\sqrt{3}$C.$\sqrt{3}$D.$\frac{2}{3}$

分析 如图先用所给的角将矩形的面积表示出来,建立三角函数模型,再根据所建立的模型利用三角函数的性质求最值.

解答 解:如图,记∠COP=α,在Rt△OBC中,OB=2cosα,BC=2sinα,
在Rt△OAD中,OA=$\frac{\sqrt{3}}{3}$DA=$\frac{\sqrt{3}}{3}$BC=$\frac{\sqrt{3}}{3}$×2sinα.
所以AB=OB-OA=2cosα-$\frac{2\sqrt{3}}{3}$sinα.
设矩形ABCD的面积为S,则S=AB•BC=(2cosα$\frac{2\sqrt{3}}{3}$sinα)•2sinα=4sinαcosα$\frac{4\sqrt{3}}{3}$sin2α
=2sin2α+$\frac{2\sqrt{3}}{3}$cos2α-$\frac{2\sqrt{3}}{3}$
=$\frac{4}{\sqrt{3}}$sin(2α+$\frac{π}{6}$)-$\frac{2\sqrt{3}}{3}$.
由于0<α<$\frac{α}{3}$,所以当2α+$\frac{π}{6}$=$\frac{π}{2}$,即α=$\frac{π}{6}$时,S最大=$\frac{4}{\sqrt{3}}$-$\frac{2\sqrt{3}}{3}$=$\frac{2\sqrt{3}}{3}$.
因此,当α=$\frac{π}{6}$时,矩形ABCD的面积最大,最大面积为$\frac{2\sqrt{3}}{3}$.
故选:A.

点评 本题考查在实际问题中建立三角函数模型,求解问题的关键是根据图形建立起三角模型,将三角模型用所学的恒等式变换公式进行化简.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求等比数列1,-$\frac{1}{2}$,$\frac{1}{4}$,…的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)为奇函数,当x≥0时,f(x)=2x+t,f(m)<3,则m取值范围是m<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.f(x)=sin(2x-$\frac{π}{12}$)+sin(2x-$\frac{7π}{12}$),且f(α)=f(β)=$\frac{1}{2}$,(α,β∈($\frac{π}{6}$,$\frac{7π}{6}$)),求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{{x}^{2}}{x-2}$(x∈R且x≠2).求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若函数f(x-1)=$\sqrt{x+2}$+$\frac{1}{x+1}$,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{\sqrt{1+si{n}^{2}x}+sinx-1}{\sqrt{1+si{n}^{2}x}+sinx+1}$,其中x∈R.
(Ⅰ)证明:2π是函数f(x)的周期;
(Ⅱ)①指出并证明函数f(x)的奇偶性;
②写出(不必说明理由)函数y=f(x)图象的一条对称轴;
(Ⅲ)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.因式分解:x3+3x-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合M含有三个元素1,2,x2,则x的取值范围为x≠±1且x≠±$\sqrt{2}$.

查看答案和解析>>

同步练习册答案