精英家教网 > 高中数学 > 题目详情

已知椭圆C:的两个焦点为,且经过点,一组斜率为的直线与椭圆C都相交于不同两点

(1)求椭圆C的方程;

(2)证明:线段的中点都有在同一直线上;

(3)对于(2)中的直线,设与椭圆C交于两点M、N,试探究椭圆上使MNQ面积为的点Q有几个?证明你的结论。(不必具体求出Q点的坐标)

 

 

【答案】

解:(1)(法一)

        椭圆C的方程为

(法二)由解得  椭圆C的方程为

(2)(法一)设的中点坐标,则

两式相减得

 代入,得

线段的中点都有在同一直线上;

(法二)设直线的方程为,代入

,设的中点坐标,则

,则

消去

线段的中点都有在同一直线上;(中点弦、定直线、消参求轨迹)

(3)代入

           |MN|=,

设点Q到直线的距离为,则由=

(法一)设Q在与直线MN平行的直线上,则直线与直线MN的距离为          解得

时,代入

方程①有两不等实解,即有两个不同点Q满足;同理可得,时也有两个不同的点Q满足。

综上,共有4个不同点Q满足条件

(若求点Q坐标,则为)

法(二)设D为椭圆上不同于M、N的任一点,D到MN的距离为

即椭圆C上点到直线MN距离的最大值为

,故由图可知,椭圆C上有4个点Q能满足条件。

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:2010年内蒙古赤峰市高三统考数学试卷(文科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

同步练习册答案