分析 (1)由f(x)=x+ax2+blnx,知f′(x)=1+2ax+$\frac{b}{x}$,由y=f(x)过P(1,0),且在P点处的切线斜率为2,知$\left\{\begin{array}{l}{f(1)=1+a=0}\\{f′(1)=1+2a+b=2}\end{array}\right.$,由此能求出a,b.
(2)f(x)的定义域为(0,+∞),由(I)知f(x)=x-x2+3lnx,设g(x)=f(x)-(2x-2)=2-x-x2+3lnx,则g′(x)=-$\frac{(x-1)(2x-3)}{x}$,由此能证明f(x)≤2x-2.
解答 解:(1)∵f(x)=x+ax2+blnx,
∴f′(x)=1+2ax+$\frac{b}{x}$,
∵y=f(x)过P(1,0),且在P点处的切线斜率为2,
∴$\left\{\begin{array}{l}{f(1)=1+a=0}\\{f′(1)=1+2a+b=2}\end{array}\right.$,
解得a=-1,b=3.
(2)f(x)的定义域为(0,+∞),
由(1)知f(x)=x-x2+3lnx,
设g(x)=f(x)-(2x-2)=2-x-x2+3lnx,
则g′(x)=-$\frac{(x-1)(2x-3)}{x}$,
当0<x<1时,g(x)′>0;当x>1时,g′(x)<0.
∴g(x)在(0,1)单调增加,在(1,+∞)单调减少.
∴g(x)max=g(1)=0.
∴g(x)=f(x)-(2x-2)≤0,
∴f(x)≤2x-2.
点评 本题考查满足条件的实数值的求法,考查不等式的证明.解题要认真审题,注意导数性质和构造法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | (2)(3) | B. | (1)(3)(4) | C. | (1)(2)(3) | D. | (1)(2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3+2$\sqrt{2}$ | B. | 6 | C. | 9 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
年份 | 2014 | 2015 | 2016 |
1月份平均AQI(y) | 76 | 68 | 48 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com