精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若不等式的解集是,求的值;

2)当时,若不等式对一切实数恒成立,求的取值范围;

3)当时,设,若存在,使得成立,求的取值范围.

【答案】1;(2;(3).

【解析】

1)根据不等式的解集可以得到相对应的不等式,再结合已知不等式直接求解即可;

2)分类讨论,结合一次函数的性质和二次函数的性质直接求解即可;

3(方法1)对函数的解析式进行配方,利用零点存在原理,结合一元二次方程根的分布性质直接求解即可;

(方法2) 因为存在,使得成立,所以关于的方程有两个不等实根,且至少有一根在内,这样结合一元二次方程根的分布性、函数的单调性直接求解即可.

1)因为

所以

2)当时,不等式.

,则不等式不恒成立.

则由题意可得解得

的取值范围是

3(方法1).

因为存在,使得成立,所以函数在区间内的值有正有负.

所以必须有,解得

,即,亦即,则,于是必须满足,所以.

,即,则,必有,不满足条件.

,即,则,不满足条件.

由①②解得的取值范围是

(方法2)因为存在,使得成立,

所以关于的方程有两个不等实根,且至少有一根在.

,解得

时,

,令 ,所以,该函数在单调递减,在上单调递增,所以,所以

由①②得的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点.若是该椭圆上的一个动点的最大值为1.

(1)求椭圆的方程

(2)设直线与椭圆交于两点关于轴的对称点为(不重合)则直线轴是否交于一个定点若是请写出定点坐标并证明你的结论若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,上一点,,且,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调递增区间;

2)对于为任意实数,关于的方程恰好有两个不等实根,求实数的值;

3)在(2)的条件下,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥

证明平面平面

当四棱锥的体积为且二面角为钝角时求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的个数①“”的否定是“”;②用相关指数可以刻画回归的拟合效果,值越小说明模型的拟合效果越好;③命题“若,则”的逆命题为真命题;④若的解集为,则.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知抛物线C的方程Cy2="2" p xp0)过点A1-2.

I)求抛物线C的方程,并求其准线方程;

II)是否存在平行于OAO为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求出直线l的方程;若不存在,说明理由。

【答案】I)抛物线C的方程为,其准线方程为II)符合题意的直线l 存在,其方程为2x+y-1 =0.

【解析】

试题()求抛物线标准方程,一般利用待定系数法,只需一个独立条件确定p的值:(-222p·1,所以p2.再由抛物线方程确定其准线方程:,()由题意设,先由直线OA的距离等于根据两条平行线距离公式得:解得,再根据直线与抛物线C有公共点确定

试题解析:解 (1)将(1,-2)代入y22px,得(-222p·1

所以p2

故所求的抛物线C的方程为

其准线方程为

2)假设存在符合题意的直线

其方程为

因为直线与抛物线C有公共点,

所以Δ48t≥0,解得

另一方面,由直线OA的距离

可得,解得

因为-1[,+),1∈[,+),

所以符合题意的直线存在,其方程为

考点:抛物线方程,直线与抛物线位置关系

【名师点睛】求抛物线的标准方程的方法及流程

1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.

2)流程:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.

提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mxx2=mym≠0).

型】解答
束】
22

【题目】已知椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上.

(1)求椭圆的方程;

(2)直线过椭圆左焦点交椭圆于为椭圆短轴的上顶点,当直线时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰直角中,,点在线段.

(Ⅰ) ,求的长;

)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019422日是第50个世界地球日,半个世纪以来,这一呼吁热爱地球环境的运动已经演变为席卷全球的绿色风暴,让越来越多的人认识到保护环境、珍惜自然对人类未来的重要性.今年,自然资源部地球日的主题是“珍爱美丽地球,守护自然资源”.某中学举办了以珍爱美地球,守护自然资源为主题的知识竞赛.赛后从该校高一和高二年级的参赛者中随机抽取100人,将他们的竞赛成绩分为7组:[3040),[4050),[5060),[6070),[7080),[8090),[90100],并得到如下频率分布表:

现规定,“竞赛成绩≥80分”为“优秀”“竞赛成绩<80分”为“非优秀”

)请将下面的2×2列联表补充完整;

优秀

非优秀

合计

高一

50

高二

15

合计

100

)判断是否有99%的把握认为竞赛成绩与年级有关

附:独立性检验界值

查看答案和解析>>

同步练习册答案