精英家教网 > 高中数学 > 题目详情
已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交不同两点M、N且满足
OM
ON
?若存在,求出直线l的方程;若不存在,说明理由.
分析:(Ⅰ)设抛物线C2:y2=2px(p≠0),则有
y2
x
=2p(x≠0)
,据此验证4个点知(3,-2
3
)、(4,-4)在抛物线上,易求C2:y2=4x,设C1
x2
a2
+
y2
b2
=1,a>b>0
,把点(-2,0)(
2
2
2
)代入得:
4
a2
=1
2
a2
+
1
2b2
=1
,由此能够求出C1方程.
(Ⅱ)容易验证直线l的斜率不存在时,不满足题意;当直线l斜率存在时,假设存在直线l过抛物线焦点F(1,0),
设其方程为y=k(x-1),与C1的交点坐标为M(x1,y1),N(x2,y2),由
x2
4
+y2=1
y=k(x-1)
消掉y,得(1+4k2)x2-8k2x+4(k2-1)=0,再由韦达定理能够导出存在直线l满足条件,且l的方程为:y=2x-2或y=-2x+2.
解答:解:(Ⅰ)设抛物线C2:y2=2px(p≠0),则有
y2
x
=2p(x≠0)
,据此验证4个点知(3,-2
3
)、(4,-4)在抛物线上,易求C2:y2=4x(2分)
设C1
x2
a2
+
y2
b2
=1,a>b>0
,把点(-2,0)(
2
2
2
)代入得:
4
a2
=1
2
a2
+
1
2b2
=1
解得
a2=4
b2=1

∴C1方程为
x2
4
+y2=1
(5分)
(Ⅱ)容易验证直线l的斜率不存在时,不满足题意;(6分)
当直线l斜率存在时,假设存在直线l过抛物线焦点F(1,0),
设其方程为y=k(x-1),与C1的交点坐标为M(x1,y1),N(x2,y2
x2
4
+y2=1
y=k(x-1)
消掉y,得(1+4k2)x2-8k2x+4(k2-1)=0,(8分)
于是x1+x2=
8k2
1+4k2
x1x2=
4(k2-1)
1+4k2

y1y2=k(x1-1)×k(x1-1)=k2[x1x2-(x1+x2)+1]
y1y2=k2(
4(k2-1)
1+4k2
-
8k2
1+4k2
+1)=-
3k2
1+4k2
②(10分)
OM
ON
,即
OM
ON
=0
,得x1x2+y1y2=0(*),
将①、②代入(*)式,得
4(k2-1)
1+4k2
-
3k2
1+4k2
=
k2-4
1+4k2
=0
,解得k=±2;(11分)
所以存在直线l满足条件,且l的方程为:y=2x-2或y=-2x+2.(12分).
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若
AM
=
1
2
MB
,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
   C1  C2
 x  2  
2
 4  3
 y  0  
2
2
 4 -2
3
则C1、C2的标准方程分别为
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门二模)已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,直线l过点M(4,0).
(1)写出抛物线C2的标准方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1C的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•中山市三模)已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 1 -
5
2
2
y -2
2
0 -4
15
5
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)过点曲线的C2的焦点B的直线l与曲线C1交于M、N两点,与y轴交于E点,若
EM
1
MB
EN
2
NB
,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1,抛物线C2的焦点均在y轴上,C1的中心和C2 的顶点均为坐标原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 0 -1
2
4
y -2
2
1
16
-2 1
(Ⅰ)求分别适合C1,C2的方程的点的坐标;
(Ⅱ)求C1,C2的标准方程.

查看答案和解析>>

同步练习册答案