精英家教网 > 高中数学 > 题目详情
若曲线f(x)=x•sinx+1在x=处的切线与直线ax+2y+1=0互相垂直,则实数a等于   
【答案】分析:先求出导函数f'(x),求出的值从而得到切线的斜率,根据两直线垂直斜率乘积为-1建立等式关系,解之即可求出a的值.
解答:解:f'(x)=sinx+xcosx,
即函数f(x)=xsinx+1在点 处的切线的斜率是1,
直线ax+2y+1=0的斜率是
所以 ,解得a=2.
故答案为:2.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及直线的一般式方程与直线的垂直关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线线f(x,y)=0(或y=f(x))的自公切线,下列方程的曲线:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=
4-y2
,存在自公切线的是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线线f(x,y)=0(或y=f(x))的自公切线,下列方程的曲线:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=数学公式,存在自公切线的是


  1. A.
    ①③
  2. B.
    ①④
  3. C.
    ②③
  4. D.
    ②④

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省宁德市柘荣一中高三(上)第一次月考数学试卷(解析版) 题型:选择题

若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线线f(x,y)=0(或y=f(x))的自公切线,下列方程的曲线:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=,存在自公切线的是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源:2011年福建师大附中高考数学模拟试卷(理科)(解析版) 题型:选择题

若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线线f(x,y)=0(或y=f(x))的自公切线,下列方程的曲线:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=,存在自公切线的是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

同步练习册答案