精英家教网 > 高中数学 > 题目详情
15.在△ABC中,已知$∠B=45°,\;AC=\sqrt{2}BC$,则∠C=105°.

分析 由正弦定理可得角A,再运用三角形的内角和定理,计算即可得到C.

解答 解:由题意:已知$∠B=45°,\;AC=\sqrt{2}BC$,即b=$\sqrt{2}$a
由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$,则有sinA=$\frac{asin45°}{\sqrt{2}a}=\frac{1}{2}$,
∵0°<A<135°
∴A=30°
则C=180°-30°-45°=105°
故答案为:105°

点评 本题考查三角形的正弦定理和内角和定理的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.复数z=$\frac{3+2i}{i}$ (i为虚数单位)的虚部为(  )
A.3B.-3C.-3iD.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在三棱锥P-ABC中,PA⊥平面ABC,PA=2$\sqrt{3}$,AC=2,AB=1,∠BAC=60°,则三棱锥P-ABC的外接球的表面积为(  )
A.13πB.14πC.15πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}=1(b>0)$的一条渐近线方程为3x+2y=0,则b等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设m,n(3≤m≤n)是正整数,数列Am:a1,a2,…,am,其中ai(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若数列Am满足:只要存在i,j(1≤i<j≤m)使ai+aj≤n,总存在k(1≤k≤m)有ai+aj=ak,则称数列Am是“好数列”.
(Ⅰ)当m=6,n=100时,
(ⅰ)若数列A6:11,78,x,y,97,90是一个“好数列”,试写出x,y的值,并判断数列:11,78,90,x,97,y是否是一个“好数列”?
(ⅱ)若数列A6:11,78,a,b,c,d是“好数列”,且a<b<c<d,求a,b,c,d共有多少种不同的取值?
(Ⅱ)若数列Am是“好数列”,且m是偶数,证明:$\frac{{{a_1}+{a_2}+…+{a_m}}}{m}≥\frac{n+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(sinx+cosx)2+2cos2x.
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0且a≠1,函数$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{a^x}+b,}&{x≤0}\end{array}}\right.$满足f(0)=2,f(-1)=3,则f(f(-3))=(  )
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\vec a=(-1,\;1)$,$\vec b=(n,\;2)$,若$\vec a•\vec b=\frac{5}{3}$,则n=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,$C=\sqrt{2},∠B=\frac{π}{4},b=2$,则∠A=105°.

查看答案和解析>>

同步练习册答案