精英家教网 > 高中数学 > 题目详情

已知函数

(Ⅰ)若是增函数,求b的取值范围;

(Ⅱ)若时取得极值,且时,恒成立,求c的取值范围.

 

【答案】

(Ⅰ);(Ⅱ).

【解析】

试题分析:(Ⅰ)由于增函数的导数应大于等于零,故先对函数求导并令其大于零,可得的取值范围,注意在求导时需细心;(Ⅱ)由函数在处取得极值可知,在处函数导数为零,可求得的值,要使时,恒成立,需要求出中的最大值,只有最大值小于,则恒成立,故可求得的范围,这类题目就是要求出在给定区间上的最值.

试题解析:(1),∵是增函数,

恒成立,∴,解得

时,只有时,,∴b的取值范围为.  3分

(Ⅱ)由题意,是方程的一个根,设另一根为

   ∴  ∴,             5分

列表分析最值:

1

2

 

0

0

 

递增

极大值

递减

极小值

递增

∴当时,的最大值为,               9分

∵对时,恒成立,∴,解得

的取值范围为                      12分

考点:1.利用导数求函数最值;2.利用导数研究函数的单调性;3.一元二次不等式解法.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log
13
x
,若f(a3)+f(b3)=6,则f(ab)的值等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)、g(x)的定义域分别为M,N,且M⊆N,若对任意的x∈M,都有g(x)=f(x),则称g(x)是f(x)的“拓展函数”.已知函数f(x)=
1
3
log2x
,若g(x)是f(x)的“拓展函数”,且g(x)是偶函数,则符合条件的一个g(x)的解析式是
g(x)=
1
3
log2|x|
(其它符合条件的函数也可)
g(x)=
1
3
log2|x|
(其它符合条件的函数也可)

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.

已知函数

(1)若,求的值;

(2)若对于恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省海林市高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知函数

(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求,的值;

(2)当时,若函数在区间[,2]上的最大值为28,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省如东县高三12月四校联考文科数学试卷(解析版) 题型:解答题

(本小题满分16分)

已知函数

(1)若上的最大值为,求实数的值;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。

 

查看答案和解析>>

同步练习册答案