精英家教网 > 高中数学 > 题目详情

设函数(其中).
(1) 当时,求函数的单调区间和极值;
(2) 当时,函数上有且只有一个零点.

(1)函数的递减区间为递增区间为极大值为,极小值为;(2)详见试题解析.

解析试题分析:(1)先求,解方程,得可能的极值点,列表可得函数的单调区间和极值;(2).当时,上无零点,故只需证明函数上有且只有一个零点.分利用函数的单调性证明函数上有且只有一个零点.
试题解析:(1)当时,
,得
变化时,的变化如下表:















极大值

极小值

由表可知,函数的递减区间为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,求的单调区间;
(2)当,且时,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求
(2)设,求函数上的最大值;
(3)设,若对于一切,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,函数.
(1)若,求函数的极值,
(2)是否存在实数,使得成立?若存在,求出实数的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)
(Ⅰ)设,求证:当时,
(Ⅱ)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数为奇函数,其图象在点处的切线与直线垂直,导函数 的最小值为
(1)求的值;
(2)求函数的单调递增区间,并求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若是增函数,求b的取值范围;
(Ⅱ)若时取得极值,且时,恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,函数
(Ⅰ)求的单调区间与极值;
(Ⅱ)求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)写出的最小正周期
(Ⅱ)求由,以及围成的平面图形的面积.

查看答案和解析>>

同步练习册答案