精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是正方形,PB⊥平面ABCD,MA⊥平面ABCD,PB=AB=2MA.求证:
(1)平面AMD平面BPC;
(2)平面PMD⊥平面PBD.
证明:(1)因为PB⊥平面ABCD,MA⊥平面ABCD,所以PBMA.因PB?平面BPC,MA不在平面BPC内,所以MA平面BPC.同理DA平面BPC,因为MA?平面AMD,AD?平面AMD,MA∩AD=A,所以平面AMD平面BPC.(6分)
(2)连接AC,设AC∩BD=E,取PD中点F,连接EF,MF.
因ABCD为正方形,所以E为BD中点.
因为F为PD中点,所以EF
.
.
1
2
PB.因为AM
.
.
1
2
PB,所以AM
.
.
EF.
所以AEFM为平行四边形.所以MFAE.因为PB⊥平面ABCD,AE?平面ABCD,
所以PB⊥AE.所以MF⊥PB.
因为ABCD为正方形,所以AC⊥BD.所以MF⊥BD.
所以MF⊥平面PBD.又MF?平面PMD.
所以平面PMD⊥平面PBD.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥S-ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=
2

(I)求证:MN⊥平面ABN;
(II)求二面角A-BN-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知M是正四面体ABCD棱AB的中点,N是棱CD的中点,则下列结论中,正确的个数有(  )
(1)MN⊥AB;
(2)VA-MCD=VB-MCD
(3)平面CDM⊥平面ABN;
(4)CM与AN是相交直线.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,AB=
3
,E、F
分别为AC、AD的中点.
(1)求证:平面BEF⊥平面ABC;
(2)求直线AD与平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,DC⊥平面ABC,EADC,AB=AC=AE=
1
2
DC,M为BD的中点.
(Ⅰ)求证:EM平面ABC;
(Ⅱ)求证:平面AEM⊥平面BDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD-A1B1C1D1中,M,N分别是棱AB,BC上异于端点的点,
(1)证明△B1MN不可能是直角三角形;
(2)如果M,N分别是棱AB,BC的中点,
(ⅰ)求证:平面B1MN⊥平面BB1D1D;
(ⅱ)若在棱BB1上有一点P,使得B1D面PMN,求B1P与PB的比值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
2
,动点D在线段AB上.
(Ⅰ)求证:平面COD⊥平面AOB;
(Ⅱ)当点D运动到线段AB的中点时,求二面角D-CO-B的大小;
(Ⅲ)当CD与平面AOB所成角最大时,求三棱锥C-OBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间[0,3]上任取三个数x,y,z,则使得不等式(x-1)2+y2+z2≤1成立的概率(  )
A.
π
8
B.
π
27
C.
π
81
D.
π
64

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点作圆的切线,直线与直线平行,则直线的距离为(   )
A.4B.2C.D.

查看答案和解析>>

同步练习册答案