精英家教网 > 高中数学 > 题目详情
9.函数y=e2x-1的零点是0.

分析 令y=0,求出x的值,即函的零点即可.

解答 解:令y=0,即e2x=1,解得:x=0,
故答案为:0.

点评 本题考查了解方程问题,考查函数的零点的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列对古典概型的说法中正确的是(  )
①试验中所有可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
③每个基本事件出现的可能性相等;
④基本事件总数为n,随机事件A若包含k个基本事件,则P(A)=$\frac{k}{n}$.
A.②④B.①③④C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆$\frac{{x}^{2}}{9+k}$+$\frac{{y}^{2}}{5-k}$=1的离心率为$\frac{1}{2}$,则实数k的值为(  )
A.-1B.47C.-1或-3D.-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别为a,b,c.已知B≠$\frac{π}{2}$,且3cosC+c•cosB=$\frac{3sinA}{sinB}$
(1)求b的值;
(2)若B=$\frac{π}{3}$,求△ABC周长的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若不等式$a<x+\frac{4}{x}$对?x∈(0,+∞)恒成立,则实数a的取值范围是(-∞,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点P(0,1),且与直线2x+3y-4=0垂直的直线方程为3x-2y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点,A,B为椭圆C的左、右顶点,点P在椭圆C上,且PF⊥x轴,过点A的直线与线段PF交与点M,与y轴交与点E,直线BM与y轴交于点N,若NE=2ON,则椭圆C的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.二次不等式-$\frac{a}{3}$x2+2bx-c<0的解集是全体实数的充要条件是(  )
A.$\left\{\begin{array}{l}{a>0}\\{4{b}^{2}-\frac{4}{3}ac<0}\end{array}\right.$B.$\left\{\begin{array}{l}{a>0}\\{4{b}^{2}-\frac{4}{3}ac>0}\end{array}\right.$C.$\left\{\begin{array}{l}{a<0}\\{4{b}^{2}-\frac{4}{3}ac>0}\end{array}\right.$D.$\left\{\begin{array}{l}{a<0}\\{4{b}^{2}-\frac{4}{3}ac<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$e=\frac{{\sqrt{3}}}{2}$,P为椭圆E上的动点,P到点M(0,2)的距离的最大值为$\frac{2}{3}\sqrt{21}$,直线l交椭圆于A(x1,y1)、B(x2,y2)两点.
(1)求椭圆E的方程;
(2)若以P为圆心的圆的半径为$\frac{2}{5}\sqrt{5}$,且圆P与OA、OB相切.
(i)是否存在常数λ,使x1x2+λy1y2=0恒成立?若存在,求出常数λ;若不存在,说明理由;
(ii)求△OAB的面积.

查看答案和解析>>

同步练习册答案