精英家教网 > 高中数学 > 题目详情
18.下列说法不正确的是(  )
A.命题“若a>b,则ac>bc”是真命题
B.命题“若a2+b2=0,则a,b全为0”是真命题
C.命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”
D.命题“若a=0,则ab=0”的逆否命题是“若ab≠0,则a≠0”

分析 利用不等关系判断A的正误;等式关系判断B的正误;否命题判断C的正误;逆否命题判断D 的正误;

解答 解:命题“若a>b,当c≤0时,则ac>bc”是假命题,所以A不正确;
命题“若a2+b2=0,则a,b全为0”是真命题,正确;
命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”,满足否命题的形式,正确;
命题“若a=0,则ab=0”的逆否命题是“若ab≠0,则a≠0”,满足逆否命题的形式,正确;
故选:A.

点评 本题考查命题的真假的判断与应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.用数学归纳法证明1+2+22+…+2n+1=2n+2-1(n∈N*)的过程中,在验证n=1时,左端计算所得的项为(  )
A.1B.1+2C.1+2+22D.1+2+22+23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{{F_2}Q}$=$\overrightarrow 0$.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若过A,Q,F2三点的圆恰好与直线$\sqrt{7}$x-y+$\sqrt{7}$+$4\sqrt{2}$=0相切,求椭圆C的方程;
(Ⅲ)过F2的直线L与(Ⅱ)中椭圆C交于不同的两点M、N,则△F1MN的内切圆的面积是否存    在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{2sin(\frac{π}{12}x)-1,x>1}\end{array}\right.$,则f[f(2)]=(  )
A.-2B.-1C.2${\;}^{\sqrt{3}-1}$-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC三边分别为a,b,c,且a2+c2=b2+ac,则边b所对应的角B大小为60°;此时,如果AC=2$\sqrt{3}$,则$\overrightarrow{AB}$$•\overrightarrow{AC}$的最大值为6+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在△ABC中,AB=AC=2,BC=$\sqrt{2}$,且A在平面α上,B、C在平面α的同侧,M为BC的中点,若△ABC在平面α上的射影是以A为直角顶点的△AB′C′,则AM与平面α所成角的正弦值的取值范围是(  )
A.[$\frac{\sqrt{42}}{7}$,1)B.[$\frac{\sqrt{42}}{7}$,1]C.[$\frac{\sqrt{42}}{7}$,$\frac{\sqrt{14}}{4}$]D.[$\frac{\sqrt{42}}{7}$,$\frac{\sqrt{14}}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x>0,y>0,且x2-2xy+4y2=1.
(Ⅰ)求证:x+2y≤2;
(Ⅱ)求y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“?x0∈(0,+∞),lnx0=x0-1”的否定是(  )
A.?x∈(0,+∞),lnx≠x-1B.?x∉(0,+∞),lnx=x-1
C.?x0∈(0,+∞),lnx0≠x0-1D.?x0∉(0,+∞),lnx0=x0-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x3-2x+1的图象在点x=1处的切线方程是x-y-1=0.

查看答案和解析>>

同步练习册答案