精英家教网 > 高中数学 > 题目详情

【题目】

1)求的单调区间和最小值;

2)讨论的大小关系;

3)求a的取值范围,使得对任意成立.

【答案】(1)见解析;(2)见解析;(3.

【解析】

1)利用导数先求出函数的单调区间,即得函数的最小值;

(2)构造函数设,求出函数的单调性,分类讨论即得解;

3)根据(1)可得不等式等价于,解不等式即得解.

1)由题设知

,令

时,,故的单调减区间.

时,,故的单调递增区间,

因此,的唯一极值点,且为极小值点,从而是最小值点,所以最小值为.

2

,则

因此,内单调递减,

时,,即

时,,即.

时,,即.

综上:当时,

时,

时,即.

3)由(1)知的最小值为1

,对任意成立等价于,即.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等边三角形ABC的边长为分别为的中点,将沿折起得到四棱锥.P为四棱锥的外接球球面上任意一点,当四棱锥的体积最大时,点P到平面距离的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )

A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著

B.从2014年到2018年这5年,高铁运营里程与年价正相关

C.2018年高铁运营里程比2014年高铁运营里程增长80%以上

D.从2014年到2018年这5年,高铁运营里程数依次成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动支付的普及,中国人的生活方式正在悄然发生改变,带智能手机而不带钱包出门渐渐成为中国人的新习惯.在调查现金支付,银联卡支付,手机支付三种支付方式中最常用的支付方式这个问题时,在中国某地,从20岁到40岁人群中随机抽取55人,从40岁到60岁人群随机抽取45人,进行答题.20岁到40岁人群的支付情况是选择现金支付的占、银联卡支付的占、手机支付的占40岁到60岁人群的支付情况是:现金支付的占、银联卡支付的占、手机支付的占

1)请根据以上调查结果将下面列联表补充完整;并判断至多有多少把握认为支付方式与年龄有关;

手机支付

其他支付方式

合计

20岁到40

40岁到60

合计

2)商家为了鼓励使用手机支付规定手机支付打9折,其他支付方式不打折.现有一物品售价100元,以样本中支付方式的频率估计一件产品支付方式的概率,假设购买每件物品的支付方式相互独立.求4件此种物品销售额的数学期望.

附:,其中

0.40

0.25

0.15

0.10

0.050

0.025

0.01

0.708

1.323

2.072

2.706

3.841

5.024

6.636

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量(万只)与时间(年)(其中的关系为.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值其中为常数,且)来进行生态环境分析.

(1)当时,求比值取最小值时的值;

(2)经过调查,环保部门发现:当比值不超过时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数的取值范围.为自然对数的底

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.

1)求曲线的参数方程;

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C与圆C15x2+5y2mx16y+320外切于点P),且与y轴相切.

1)求圆C的方程

2)过点O作直线l1l2分别交圆CAB两点,若l1l2斜率之积为﹣2,求ABC面积S的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车的投放,方便了市民短途出行,被誉为中国新四大发明之一.某市为研究单车用户与年龄的相关程度,随机调查了100位成人市民,统计数据如下:

不小于40

小于40

合计

单车用户

12

y

m

非单车用户

x

32

70

合计

n

50

100

1)求出列联表中字母xymn的值;

2)①从此样本中,对单车用户按年龄采取分层抽样的方法抽出5人进行深入调研,其中不小于40岁的人应抽多少人?

②从独立性检验角度分析,能否有以上的把握认为该市成人市民是否为单车用户与年龄是否小于40岁有关.

下面临界值表供参考:

P

0.15

0.10

0.05

0.25

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x2-1)lnx-x2+2x.

(1)求曲线y=f(x)在点(2,f(2))处的切线方程;

(2)证明:f(x)≥1.

查看答案和解析>>

同步练习册答案