精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
已知函数处有极小值
(1)求函数的解析式;
(2)若函数只有一个零点,求的取值范围。

(1)(2),或,或

解析试题分析:(1)    1分
依题意有,      3分
解得,          4分
此时
满足处取极小值
    5分
(2)
…………6分
时,,∴上有一个零点(符合),……8分
时,
①若方程上有2个相等实根,即函数上有一个零点。
,得……………………………………10分
②若有2个零点,1个在内,另1个在外,
,即,解得,或…………12分
经检验有2个零点,不满足题意。
综上:的取值范围是,或,或……………………14分
考点:本题考查了导数的运用
点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(I)当a=18时,求函数的单调区间;
(II)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的最小值;
(Ⅱ)若对所有都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
⑴若的极值点,求的值;
⑵若的图象在点处的切线方程为,求在区间上的最大值;
⑶当时,若在区间上不单调,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数
(I)若曲线在点处的切线与直线垂直,求a的值;
(II)求函数的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算下列定积分(本小题满分12分)
(1)            (2)
(3)                (4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知是函数的一个极值点. 
(Ⅰ)求的值;
(Ⅱ)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 
⑴若的极值点,求实数值。
⑵若对都有成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数
(1)判断的单调性;
(2)记若函数有两个零点,求证

查看答案和解析>>

同步练习册答案