【题目】如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED= ,⊙O的半径为3,求OA的长.
【答案】
(1)解:如图,连接OC,
∵OA=OB,CA=CB,
∴OC⊥AB.
∴AB是⊙O的切线
(2)解:∵BC是圆O切线,且BE是圆O割线,
∴BC2=BDBE,
∵tan∠CED= ,∴ .
∵△BCD∽△BEC,∴ ,
设BD=x,BC=2x.又BC2=BDBE,∴(2x)2=x(x+6),
解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5
【解析】(1)要想证AB是⊙O的切线,只要连接OC,求证∠ACO=90°即可;(2)先由三角形判定定理可知,△BCD∽△BEC,得BD与BC的比例关系,最后由切割线定理列出方程求出OA的长.
【考点精析】解答此题的关键在于理解直线的参数方程的相关知识,掌握经过点,倾斜角为的直线的参数方程可表示为(为参数).
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥 中,底面为直角梯形, , ,平面底面ABCD,Q为AD的中点,M是棱上的点,
(Ⅰ)若是棱 的中点,求证: ;
(Ⅱ)若二面角的大小为,试求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的左右顶点分别为A(﹣2,0),B(2,0),椭圆上除A、B外的任一点C满足kACkBC=﹣ .
(1)求椭圆C的标准方程;
(2)过点P(4,0)任作一条直线l与椭圆C交于不同的两点M,N,在x轴上是否存在点Q,使得∠PQM+∠PQN=180°?若存在,求出点Q的坐标;若不存在,请说明现由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆的另一个焦点是,且.
(1) 求椭圆的方程;
(2) 直线过点,且与椭圆交于两点,求的内切圆面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com