精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a、b、c分别是角A、B、C的对边,且
(1)求角B的大小;
(2)若 ,求△ABC的面积.

【答案】
(1)解:由正弦定理 得:

a=2RsinA,b=2RsinB,c=2RsinC,

将上式代入已知

即2sinAcosB+sinCcosB+cosCsinB=0,

即2sinAcosB+sin(B+C)=0,

∵A+B+C=π,

∴sin(B+C)=sinA,

∴2sinAcosB+sinA=0,即sinA(2cosB+1)=0,

∵sinA≠0,∴

∵B为三角形的内角,∴


(2)解:将 代入余弦定理b2=a2+c2﹣2accosB得:

b2=(a+c)2﹣2ac﹣2accosB,即

∴ac=3,


【解析】(1)根据正弦定理表示出a,b及c,代入已知的等式,利用两角和的正弦函数公式及诱导公式变形后,根据sinA不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可求出角B的度数;(2)由(1)中得到角B的度数求出sinB和cosB的值,根据余弦定理表示出b2,利用完全平方公式变形后,将b,a+c及cosB的值代入求出ac的值,然后利用三角形的面积公式表示出△ABC的面积,把ac与sinB的值代入即可求出值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数)

(1)设过点的直线与曲线相切于点,求的值;

(2)函数的的导函数为,若上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)通过()中的方程,求出y关于x的回归方程;

(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是~分及~分的学生中选两人,记他们的成绩为,求满足“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数, ),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,圆的极坐标方程为.

(Ⅰ)讨论直线与圆的公共点个数;

(Ⅱ)过极点作直线的垂线,垂足为,求点的轨迹与圆相交所得弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有三所高校,其学生会学习部有干事人数分别为,现采用分层抽样的方法从这些干事中抽取名进行大学生学习部活动现状调查.

1)求应从这三所高校中分别抽取的干事人数;

2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(1)求甲、乙两家公司共答对道题目的概率;

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为a1= ,且2an+1=an(n∈N+).
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知AB丄平面BCD,M、N分别是AC、AD的中点,BC 丄 CD.

(1)求证:MN//平面BCD;

(2)若AB=1,BC=,求直线AC与平面BCD所成的角.

查看答案和解析>>

同步练习册答案