精英家教网 > 高中数学 > 题目详情

【题目】如图,抛物线和圆直线经过抛物线的焦点,依次交抛物线与圆四点, 的值为(

A. B. C. 1 D.

【答案】A

【解析】抛物线焦点准线方程为

的圆心是(,0)半径r=

过抛物线的焦点F的直线依次交抛物线及圆于点ABCD

AD在抛物线上,BC在圆上

①若直线的斜率不存在,则直线方程为x=

代入抛物线方程和圆的方程,

可直接得到ABCD四个点的坐标为(,p),( ,),(,)(,p)

所以|AB||CD|=pp=2

解得

②若直线的斜率存在,设为k,则直线方程为y=k(x)

因为直线过抛物线的焦点(,0)

不妨设A(x1,y1),D(x2,y2),

由抛物线的定义,|AF|= x1+,|DF|= x2+

把直线方程与抛物线方程联立,消去y可得

k2x2(pk2+2p)x+k2=0

由韦达定理有x1 x2=

而抛物线的焦点F同时是已知圆的圆心,

所以|BF|=|CF|=r=p

从而有|AB|=|AF||BF|= x1

|CD|=|DF||CF|= x2

|AB||CD|=2,即有x1 x2=2,

=2,解得.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中为自然对数的底数.

(1)若,求曲线在点处的切线斜率;

(2)证明:当时,函数有极小值,且极小值大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年4月1日,新华通讯社发布:国务院决定设立河北雄安新区.消息一出,河北省雄县、容城、安新3县及周边部分区域迅速成为海内外高度关注的焦点.

(1)为了响应国家号召,北京市某高校立即在所属的8个学院的教职员工中作了“是否愿意将学校整体搬迁至雄安新区”的问卷调查,8个学院的调查人数及统计数据如下:

调查人数()

10

20

30

40

50

60

70

80

愿意整体搬迁人数()

8

17

25

31

39

47

55

66

请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归方程保留小数点后两位有效数字);若该校共有教职员工2500人,请预测该校愿意将学校整体搬迁至雄安新区的人数;

(2)若该校的8位院长中有5位院长愿意将学校整体搬迁至雄安新区,现该校拟在这8位院长中随机选取4位院长组成考察团赴雄安新区进行实地考察,记为考察团中愿意将学校整体搬迁至雄安新区的院长人数,求的分布列及数学期望.

参考公式及数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取人对共享产品对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:

(Ⅰ)根据表中的数据,能否在犯错的概率不超过的前提下,认为对共享产品的态度与性别有关系?

Ⅱ)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员随机发放张超市的购物券,购物券金额以及发放的概率如下:

现有甲、乙两人领取了购物券,记两人领取的购物券的总金额为,求的分布列和数学期望.

参考公式 .

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有大小相同的3个红球和2个白球,现从袋中每次取出一个球,若取出的是红球则放回袋中,继续取一个球,若取出的是白球,则不放回,再从袋中取一球,直到取出两个白球或者取球5,则停止取球,设取球次数为,

(1)求取球3次则停止取球的概率;

(2)求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为,其中为参数,且在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)设是曲线上的一点,直线被曲线截得的弦长为,求点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆)与直线相切,设点为圆上一动点,轴于,且动点满足,设动点的轨迹为曲线

(1)求曲线的方程;

(2)直线与直线垂直且与曲线交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.

)完成下面的列联表;

不喜欢运动

喜欢运动

合计

女生

50

男生

合计

100

200

)在抽取的样本中,调查喜欢运动女生的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,点为点关于原点的对称点,点在抛物线上,则下列说法错误的是( )

A. 使得为等腰三角形的点有且仅有4个

B. 使得为直角三角形的点有且仅有4个

C. 使得的点有且仅有4个

D. 使得的点有且仅有4个

查看答案和解析>>

同步练习册答案