精英家教网 > 高中数学 > 题目详情
已知f(x)=2x3-ax2,g1(x)=f(x),当n≥2且n∈N*时,gn(x)=f[gn-1(x)].

(1)若f(1)=1且对任意n∈N*,都有gn(x0)=x0,求所有x0组成的集合;

(2)若f(1)>3,是否存在区间A,对n∈N*,当且仅当x∈A时,就有gn(x)<0?如果存在,求出这样的区间A;如果不存在,说明理由.

解析:(1)由f(1)=11=2-aa=1.

∴f(x)=2x3-x2.当n=1时,g1(x0)

=f(x0)=2x03-x02=x0x0(2x02-x0-1)=0,

∴x0=0或x0=1或x0=.由题设,g2(x0)=f[g1(x0)]=f(x0)=x0,假设gk(x0)=x0,当n=k+1时,gk+1(x0)=f[gk(x0)]=f(x0)=x0,

∴gn(x0)=x0对n=k+1时也成立.

∴当x0满足g1(x0)=x0时,就有gn(x0)=x0.

∴所有x0组成的集合为{0,1,}.

(2)若f(1)=2-a>3a<-1.令g1(x)=f(x)=2x3-ax2<0,得x2(2x-a)<0x<,对于n≥2,gn(x)<0f[gn-1(x)]<0gn-1(x)<.

∴若对n∈N*有gn(x)<0,必须且只需g1(x)<0.∴A=(-∞,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=2x3-ax2,g1(x)=f(x),当n≥2且n∈N*时,gn(x)=f[gn-1(x)].

(1)若f(1)=1且对任意n∈N*,都有gn(x0)=x0,求所有x0组成的集合;

(2)若f(1)>3,是否存在区间A,对n∈N*,当且仅当x∈A时,就有gn(x)<0?如果存在,求出这样的区间A;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x3-6x2+a(a为常数)在[-2,2]上有最小值3.那么f(x)在[-2,2]上的最大值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为(    )

A.-37           B.-29          C.-5            D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是(    )

A.-37               B.-29                   C.-5                    D.-11

查看答案和解析>>

同步练习册答案