分析 (1)由$2\overrightarrow{{F_1}{F_2}}$+$\overrightarrow{{F_2}Q}$=$\overrightarrow{0}$,可得F1为F2Q中点,结合过点A与AF2垂直的直线交x轴负半轴于点Q,在直角三角形AF1F2中利用a,b,c的关系结合隐含条件求得a,b,c的值,则椭圆方程可求;
(2)设出l的方程,代入椭圆的方程,消去y得到关于x的一元二次方程,由以PM,PN为邻边的平行四边形是菱形,可得($\overrightarrow{PM}+\overrightarrow{PN}$)•$\overrightarrow{MN}$=0,再结合根与系数的关系和向量的坐标表示,即可求得m的取值范围.
解答 解:(1)∵$2\overrightarrow{{F_1}{F_2}}$+$\overrightarrow{{F_2}Q}$=$\overrightarrow{0}$,∴$2\overrightarrow{{F}_{1}Q}+2\overrightarrow{Q{F}_{2}}+\overrightarrow{{F}_{2}Q}=\overrightarrow{0}$,
即$2\overrightarrow{{F}_{1}Q}=\overrightarrow{{F}_{2}Q}$,则F1为F2Q中点.
∵AQ⊥AF2,∴过A,Q,F2三点的圆的圆心为F1(-c,0),半径为2c.
则a=2c,∴△AF1F2为等边三角形,则$b=\sqrt{3}c$,
结合a2=b2+c2,解得c=1,
∴a=2,b=$\sqrt{3}$,
∴所求椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)由(1)知,F2(1,0),
设l的方程为y=kx-k,
联立$\left\{\begin{array}{l}{y=kx-k}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去y可得(3+4k2)x2-8k2x+4k2-12=0.
设M(x1,y1),N(x2,y2),
则x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$.
∴$\overrightarrow{PM}+\overrightarrow{PN}$=(x1-m,y1)+(x2-m,y2)=(x1+x2-2m,y1+y2).
=(x1+x2-2m,k(x1+x2)-2k).
又$\overrightarrow{MN}$=(x2-x1,y2-y1)=(x2-x1,k(x2-x1)).
由于菱形对角线互相垂直,则($\overrightarrow{PM}+\overrightarrow{PN}$)•$\overrightarrow{MN}$=0,
(x2-x1)[(x1+x2)-2m]+k(x2-x1)[k(x1+x2)-2k]=0.
故(x2-x1)[(x1+x2)-2m+k2(x1+x2)-2k2]=0.
∵x2-x1≠0.
∴(x1+x2)-2m+k2(x1+x2)-2k2=0,即(1+k2)(x1+x2)-2k2-2m=0.
∴(1+k2)$•\frac{8{k}^{2}}{3+4{k}^{2}}$-2k2-2m=0.
解得:m=$\frac{{k}^{2}}{3+4{k}^{2}}$=$\frac{1}{4+\frac{3}{{k}^{2}}}$,
∴$\frac{3}{{k}^{2}}>0$,∴$4+\frac{3}{{k}^{2}}>4$,
则$0<\frac{1}{4+\frac{3}{{k}^{2}}}<\frac{1}{4}$.
即m∈(0,$\frac{1}{4}$).
故存在满足题意的点P且m的取值范围是(0,$\frac{1}{4}$).
点评 本题考查椭圆的标准方程的求法,考查直线与椭圆的位置关系,考查韦达定理的运用,考查基本不等式的运用,解题时应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com