精英家教网 > 高中数学 > 题目详情
4.函数f(x)=|2x•log${\;}_{\frac{1}{2}}$x|-1的零点个数为(  )
A.1B.2C.3D.4

分析 由f(x)=0,转化为老公函数的交点,作出两个函数的图象,利用数形结合即可得到结论.

解答 解:∵f(x)=|2x•log${\;}_{\frac{1}{2}}$x|-1,
∴由f(x)=0得|$lo{g}_{\frac{1}{2}}x$|=2-x,作出y=|$lo{g}_{\frac{1}{2}}x$|,y=2-x的图象,
由图象可知两个图象的交点个数为2个,
故选:B.

点评 本题主要考查根的个数的判断,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且n,an,Sn成等差数列.
(1)求数列{an}的通项公式an
(2)记bn=an•log2(an+1),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,则输出的结果为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),圆O:x2+y2=b2,过椭圆C的上顶点A的直线l:y=kx+b分别交圆O、椭圆C于不同的两点P、Q,设$\overrightarrow{AP}$=λ$\overrightarrow{PQ}$.
(1)若点P(-3,0),点Q(-4,-1),求椭圆C的方程;
(2)若λ=3,求椭圆C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i为虚数单位,复数z满足$\overline z(1+i)=i$,则z=(  )
A.1+iB.1-iC.$\frac{1}{2}+\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点A(-1,2),B(2,3),直线l:kx-y-k+1=0与线段AB相交,则实数k的取值范围是(  )
A.-$\frac{1}{2}$≤k≤2B.k≤-$\frac{1}{2}$或k≥2C.-2≤k≤$\frac{1}{2}$D.k≤-2或k≥$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左右焦点分别为F1,F2,F2也是抛物线${C_1}:{y^2}=2px({p>0})$的焦点,点A是曲线Cl与C2在第一象限内的交点,且|AF2|=|F1F2|,则双曲线的离心率为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设α,β,γ表示平面,l表示直线,则下列命题中,错误的是(  )
A.如果α⊥β,那么α内一定存在直线平行于β
B.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
C.如果α不垂直于β,那么α内一定不存在直线垂直于β
D.如果α⊥β,那么α内所有直线都垂直于β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$f(x)=\frac{1}{x}$的导数是(  )
A.$\frac{1}{x^2}$B.$-\frac{1}{x^2}$C.$\frac{1}{2x}$D.$-\frac{1}{2x}$

查看答案和解析>>

同步练习册答案