精英家教网 > 高中数学 > 题目详情
定积分
1
-4
(|x|-1)dx的值为
 
考点:定积分
专题:导数的综合应用
分析:去绝对值后把原定积分转化为两个定积分的和,然后求出被积函数的原函数,分别代入积分上下限后作差得答案.
解答: 解:
1
-4
(|x|-1)dx=
0
-4
(-x-1)dx
+∫
1
0
(x-1)dx

=(-
1
2
x2-x)
|
0
-4
+(
1
2
x2-x)
|
1
0
=
1
2
×(-4)2-4+
1
2
-1=
7
2

故答案为:
7
2
点评:本题考查了定积分,关键在于把原定积分转化为两个定积分的和,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+2015满足f(-1)=f(3),则f(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若n∈R+,则n+
32
n2
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一回形图,其回形通道的宽和OB的长均为1,回形线与射线OA交于A1、A2
A3….若从O点到A1点的回形线为第1圈(长为7),从A1点到A2点的回形线为第2圈,从A2点到A3点的回形线为第3圈,…,依此类推,则第10圈的长为(  )
A、70B、79C、87D、98

查看答案和解析>>

科目:高中数学 来源: 题型:

设点M为△ABC内部(不含边界)任意一点,△MBC、△MAC和△MAB的面积分别为x、y、z,映射f:M→(x,y,z)使得点M对应有序实数组(x,y,z),记作f(M)=(x,y,z).若∠BAC=30°,
AB
AC
=4
3
且f(M)=(x,y,
1
2
),则
1
x
+
4
y
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当x>-1时,不等式x+
1
x+1
-1≥a恒成立,则实数a的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a=3,b=
3
,∠A=
π
3
,求
(1)∠B的大小;
(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x∈R|x-2≤5}中的最大整数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+a)-
1
2
x2,x∈[0,2],a>0.
(1)若存在x0∈[0,2],使得函数y=f(x)在点(x0,f(x0))处的切线斜率k≤1,求实数a的取值范围;
(2)求函数f(x)的最小值.

查看答案和解析>>

同步练习册答案