精英家教网 > 高中数学 > 题目详情

关于函数f(x)=数学公式(x∈R)有如下结论:
①f(x)是偶函数;
②函数f(x)的值域为(-2,2);
③f(x)在R上单调递增;
④函数|f(x+1)|的图象关于直线x=1对称;
其中正确结论的序号有________.

②③
分析:分别利用函数奇偶性,单调性,对称性的定义和性质进行判断.
解答:①因为函数的定义域为R,所以定义域关于原点对称.,所以函数f(x)是奇函数,所以①错误.
②当x=0时,f(x)=0.
当x>0时,,此时0<f(x)<2.
当x<0时,,此时-2<f(x)<0.
综上-2<f(x)<2,即函数f(x)的值域为(-2,2),所以②正确.
③当x>0时,,此时函数单调递增,由①知函数f(x)为奇函数,
所以f(x)在R上单调递增,所以③正确.
④因为为偶函数,所以|f(x)|关于y轴对称,将|f(x)|向左平移1个单位得到|f(x+1)|,
所以函数|f(x+1)|的图象关于直线x=-1对称,所以④错误.
故答案为:②③.
点评:本题综合考查了函数的奇偶性,单调性和对称性的应用,要求熟练掌握函数的性质及应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、定义在(-∞,+∞)上的偶函数f(x)满足f(x+2)=f(x),当x∈[0,1]时,f(x)=10x-1,下面关于函数f(x)的判断:
①当x∈[-1,0]时,f(x)=10-x-1;
②函数f(x)的图象关于直线x=1对称;
③对任意x1,x2∈(1,2),满足(x2-x1)(f(x2)-f(x1))<0;
④当x∈[2k,2k+1],k∈Z时,f(x)=10x-2k-1.其中正确判断的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=lg
x
x2+1
,有下列结论:①函数f(x)的定义域是(0,+∞);②函数f(x)是奇函数;③函数f(x)的最小值为-lg2;④当0<x<1时,函数f(x)是增函数;当x>1时,函数f(x)是减函数.
其中所有正确结论的序号是(  )
A、①②③B、①③④
C、①④D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,
1
2
]

②函数y=f(x)的图象关于直线x=
k
2
(k∈Z)
对称;
③函数y=f(x)是偶函数;
④函数y=f(x)在[-
1
2
1
2
]
上是增函数. 其中正确的命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=cos4x-sin4x有下面有五个命题,其中真命题的序号是
①②
①②
.①最小正周期是π;    ②向右平移
π
4
可以得到y=sin2x的图象;③在[0,
π
2
]
上是增函数; ④同一坐标系中,和函数y=x的图象有三个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•奉贤区二模)关于函数f(x)=xarcsin2x有下列命题:①f(x)的定义域是R;②f(x)是偶函数;③f(x)在定义域内是增函数;④f(x)的最大值是
π4
,最小值是0.其中正确的命题是
②④
②④
.(写出你所认为正确的所有命题序号)

查看答案和解析>>

同步练习册答案