精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱锥中,,点分别是棱的中点,点的重心.

1)证明:平面

2)若与平面所成的角为,且,求三棱锥的体积.

【答案】(1)证明见解析(2)

【解析】

1)根据等腰三角形三线合一可证,再证得到即可得证平面.

2)连接并延长交于点,则点的中点,连接,可得平面,即与平面所成的角,由勾股定理可计算出的值,根据求出锥体的体积.

1)∵的中点,∴.

的中点,∴

,∴.

,即.

平面平面,且

平面.

2)连接并延长交于点,则点的中点,连接,则.

由(1)得平面,∴与平面所成的角,即.

又在中,,∴.

的重心,分别是的中点,∴.

分别是中点,∴

则在中,,∴.

所以三棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:函数在区间上存在唯一的极小值点;

2)证明:函数有且仅有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)

①甲地5个数据的中位数为24,众数为22;

②乙地5个数据的中位数为27,总体均值为24;

③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.

则肯定进入夏季的地区有_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于两点,抛物线在点处的切线分别为,两条切线的交点为

1)证明:

2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面平面,点分别是棱的中点,点的重心.

1)证明:平面

2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中,中点,以为折痕把折起,使点到达点的位置(平面).

(Ⅰ)证明:

(Ⅱ)若直线与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,到如图所示的频率分布直方图.

1)求图中的值及样本的中位数与众数;

2)若从竞赛成绩在两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.

3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖, 得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以原点为极点,以轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆的方程为被圆截得的弦长为.

(Ⅰ)求实数的值;

(Ⅱ)设圆与直线交于点,若点的坐标为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,对任意,点都在函数的图象上.

(1),归纳数列的通项公式(不必证明).

(2)将数列依次按项、项、项、项、项循环地分为,各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值.

(3)为数列的前项积,若不等式对一切都成立,其中,求的取值范围.

查看答案和解析>>

同步练习册答案