精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线C的参数方程为为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为ρ2﹣4ρcosθ+3=0.
(1)求直线C的普通方程和曲线P的直角坐标方程;
(2)设直线C和曲线P的交点为A、B,求|AB|.

【答案】解:(1)由曲线C的参数方程为为参数),
消去参数t得到曲线C的普通方程为x﹣y﹣1=0;
∵x=ρcosθ,y=ρsinθ,曲线P在极坐标系下的方程为ρ2﹣4ρcosθ+3=0,
∴曲线P的直角坐标方程为x2+y2﹣4x+3=0.
(2)曲线P可化为(x﹣2)2+y2=1,表示圆心在(2,0),半径r=1的圆,
则圆心到直线C的距离为d=
故|AB|==
【解析】(1)参数t得到曲线C的普通方程为x﹣y﹣1=0,利用x=ρcosθ,y=ρsinθ,即可得出P的直角坐标方程;
(2)利用点到直线的距离公式可求出圆心到直线的距离d和弦长l=即可得出。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个 列联表;
(2)判断性别与休闲方式是否有关系.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(b8)xaab,当x(3)∪(2,+)时,f(x)<0.

(1)f(x)的解析式;

(2)若不等式f(x)<m的解集为R,求m的取值范围;

(3) 求不等式f(x)<m+18的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个以A1B1C1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知A1B1B1C1=2,A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:

()该几何体的体积;

()截面ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为 ,若直线l过点P,且倾斜角为 ,圆C以M为圆心,3为半径.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA||PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣4:坐标系与参数方程)
已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在一个圆形的六个区域种植观赏植物,要求同一块中种植同一种植物,相邻的两块种植不同的植物,现有4种不同的植物可供选择,则有几种种植方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的奇函数满足,且在上是减函数, 是锐角三角形的两个内角,则的大小关系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记数列的前项和为若存在实数,使得对任意的,都有,则称数列和有界数列”. 下列命题正确的是( )

A. 是等差数列,且首项,则和有界数列

B. 是等差数列,且公差,则和有界数列

C. 是等比数列,且公比,则和有界数列

D. 是等比数列,且和有界数列,则的公比

查看答案和解析>>

同步练习册答案