【题目】平行志愿投档录取模式是高考志愿的一种新方式,2008年教育部在6个省区实行平行志愿投档录取模式的试点改革.一年的实践证叨,实行平行志愿投档录取模式,有效降低了考生志愿填报风险.平行志愿是这样规定:在同一批次设置几个志愿,当考生分数达到这几个学校提档线时,本批次的志愿依次检索录取.某考生根据对自己的高考分数和对往年学校录取情况分析,从报考指南中选择了10所学校,作出如下表格:
学校 | ||||||||||
专业 | 数学系 | 计算机系 | 物理系 | |||||||
录取概率 | 0.5 | 0.5 | 0.6 | 0.9 | 0.5 | 0.7 | 0.8 | 0.7 | 0.8 | 0.9 |
(1)该考生从上表中的10所学校中选择4所学校填报,记为选择的4所学校中报数学系专业的个数,求的分布列及其期望;
(2)若该考生选择了、、、这4个学校在同一批次填报志愿,填报志愿表如下,如果仅以该考生对自己分析的录取概率为依据,当改变这4个志愿填报的顺序时,是否改变他本批次录取的可能性?请说明理由.
志愿 | 学校 |
第一志愿 | |
第二志愿 | |
第三志愿 | |
第四志愿 |
【答案】(1)详见解析(2)不改变他本批次录取的可能性,详见解析
【解析】
(1)根据超几何分布的分布列和数学期望计算公式,计算出分布列和数学期望.
(2)计算出该考生在本批次未被录取的概率,由此判断出当改变这4个志愿填报的顺序时,不改变他本批次录取的可能性.
(1)可能取的值为0,1,2,3,4,
,,,,
的分布列:
0 | 1 | 2 | 3 | 4 | |
(2)选择、、、这4个学校的概率依次设为,,,.
该考生在本批次被录取的概率为
所以,当改变这4个志愿填报的顺序时,不改变他本批次录取的可能性.
另解:该考生在本批次未被录取的概率为
该考生在本批次被录取的概率为
所以,当改变这4个志愿填报的顺序时,不改变他本批次录取的可能性.
科目:高中数学 来源: 题型:
【题目】有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l至11kg)频数分布表如下(单位: kg):
分组 |
|
|
|
|
|
频数 | 10 | 15 | 45 | 20 | 10 |
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量近似服从正态分布,其中近似为样本平均数近似为样本方差.请估算该种植园内水果质量在内的百分比;
(2)现在从质量为 的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为元,求的分布列及数学期望.
附: ,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某商场2018年洗衣机、电视机和电冰箱三种电器各季度销量的百分比堆积图(例如:第3季度内,洗衣机销量约占,电视机销量约占,电冰箱销量约占).根据该图,以下结论中一定正确的是( )
A. 电视机销量最大的是第4季度
B. 电冰箱销量最小的是第4季度
C. 电视机的全年销量最大
D. 电冰箱的全年销量最大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,M,M1分别为AB,A1B1中点.
(1)求证:C1M1∥面A1MC;
(2)若面ABC⊥面ABB1A1,△AB1B为正三角形,AB=2,BC=1,,求四棱锥B1﹣AA1C1C的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是由正整数组成的无穷数列.若存在常数,使得任意的成立,则称数列具有性质.
(1)分别判断下列数列是否具有性质; (直接写出结论)
①
②
(2)若数列满足,求证:“数列具有性质”是“数列为常数列”的充分必要条件;
(3)已知数列中且.若数列具有性质,求数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的结构如图所示,开口为正六边形ABCDEF,侧棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且与平面ABCDEF垂直,蜂房底部由三个全等的菱形构成.瑞士数学家克尼格利用微积分的方法证明了蜂房的这种结构是在相同容积下所用材料最省的,因此,有人说蜜蜂比人类更明白如何用数学方法设计自己的家园.英国数学家麦克劳林通过计算得到∠B′C′D′=109°28′16'.已知一个房中BB'=5,AB=2,tan54°44′08',则此蜂房的表面积是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:
年份 | 1 | 2 | 3 | 4 | 5 |
羊只数量(万只) | 1.4 | 0.9 | 0.75 | 0.6 | 0.3 |
草地植被指数 | 1.1 | 4.3 | 15.6 | 31.3 | 49.7 |
根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为,去掉第一年数据后得到的相关系数为,则;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+acosx.
(1)求函数f(x)的奇偶性.并证明当|a|≤2时函数f(x)只有一个极值点;
(2)当a=π时,求f(x)的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.
(1)经过1轮投球,记甲的得分为,求的分布列;
(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.
①求;
②规定,经过计算机计算可估计得,请根据①中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com