精英家教网 > 高中数学 > 题目详情
3.方程$\frac{{x}^{2}}{{25-m}$+$\frac{{y}^{2}}{{16+m}$=1表示焦点在y轴上的椭圆,则m的取值范围是($\frac{9}{2}$,25).

分析 直接由题意可得16+m>25-m>0求得x的范围得答案.

解答 解:∵方程$\frac{{x}^{2}}{{25-m}$+$\frac{{y}^{2}}{{16+m}$=1表示焦点在y轴上的椭圆,
∴$\left\{\begin{array}{l}{25-m>0}\\{16+m>25-m}\end{array}\right.$,解得:$\frac{9}{2}<m<25$.
∴m的取值范围是($\frac{9}{2}$,25).
故答案为:($\frac{9}{2}$,25).

点评 本题考查椭圆的标准方程,考查了椭圆的简单性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知定义在(-∞,+∞)上的函数f(x)是奇函数,且f(2-x)=f(x),则f(2010)值为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=2x3-6x2+7在[-1,2]上的最大值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$f(x)=\left\{\begin{array}{l}\begin{array}{l}{2{e^{x-1}}},{x<2}\end{array}\\ \begin{array}{l}{{{log}_3}({x^2}-1)},{x≥2}\end{array}\end{array}\right.$,则f{f[f(1)]}=(  )
A.2B.3C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集U=R,A={x|x2-7x+10≤0},B={x|x-x2+6<0},求:
(1)A∩B   
(2)∁R(A∪B)    
(3)(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知x=27,y=64,化简并计算:$\frac{{5{x^{-\frac{2}{3}}}{y^{\frac{1}{2}}}}}{{(-\frac{1}{4}{x^{-1}}{y^{\frac{1}{2}}})•(-\frac{5}{6}{x^{\frac{1}{3}}}{y^{\frac{1}{6}}})}}$;
(2)计算:2log32-log3$\frac{32}{9}+{log_3}8-{25^{{{log}_5}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中,判断正确的为(  )
A.若两条平行直线中的一条平行于这个平面,则另一条也平行于这个平面
B.若直线a不平行于平面α,则α内一定不存在与a平行的直线
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.若三角形ABC在平面α外,则边AB、BC、AC与面α的交点可能不在同一直线上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,点F为右焦点,直线1与圆x2+y2=3相切于点Q,且Q位于y轴的右侧,直线l交椭圆于相异两点A,B,如图所示,则|AF|+|AQ|的值为(  )
A.4B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设A、B、C、D分别表示下列角的取值范围:
(1)A是直线倾斜角的取值范围;
(2)a是锐角;
(3)c是直线与平面所成角的取值范围;
(4)D是两异面直线所成角的取值范围,
用“⊆”把集合A、B、C、D连接起来得到B⊆D⊆C⊆A.

查看答案和解析>>

同步练习册答案