精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)= 的定义域为(
A.[0,1)
B.[0,2)
C.(1,2)
D.[0,1)∪(1,2)

【答案】D
【解析】解:要使函数f(x)= 有意义,
只需x≥0,且2﹣x>0,2﹣x≠1,
解得0≤x<1或1<x<2.
即定义域为[0,1)∪(1,2),
故选:D.
【考点精析】利用函数的定义域及其求法对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知点,曲线的参数方程为为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(Ⅰ)判断点与直线的位置关系并说明理由;

(Ⅱ)设直线与曲线的两个交点分别为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数g(x)=3x , h(x)=9x
(1)解方程:h(x)﹣8g(x)﹣h(1)=0;
(2)令p(x)= ,求值:p( )+p( )+…+p( )+p( ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,并根据

(1)写出函数f(x)(x∈R)的增区间;
(2)写出函数f(x)(x∈R)的解析式;
(3)若函数g(x)=f(x)﹣2ax+2(x∈[1,2]),求函数g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一学生周末的“阅读时间”,从高一年级中随机抽取了名学生进行调査,获得了每人的周末“阅读时间”(单位:小时),按照分成组,制成样本的频率分布直方图如图所示:

(Ⅰ)求图中的值;

(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;

(Ⅲ)用样本频率代替概率. 现从全校高一年级随机抽取名学生,其中有名学生“阅读时间”在小时内的概率为,其中.当取最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,是同一个函数的是(
A.
B.f(x)=2log2x,
C.f(x)=ln(x﹣1)﹣ln(x+1),
D.f(x)=lg(1﹣x)+lg(1+x),g(x)=lg(1﹣x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=loga(x+1),(a>0,a≠1)的图象经过点(﹣ ,﹣2),图象上有三个点A,B,C,它们的横坐标依次为t﹣1,t,t+1,(t≥1),记三角形ABC的面积为S(t),

(1)求f(x)的表达式;
(2)求S(1);
(3)是否存在正整数m,使得对于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P(﹣2,3)是函数y= 图象上的点,Q是双曲线在第四象限这一分支上的动点,过点Q作直线,使其与双曲线y= 只有一个公共点,且与x轴、y轴分别交于点C、D,另一条直线y= x+6与x轴、y轴分别交于点A、B.则
(1)O为坐标原点,三角形OCD的面积为
(2)四边形ABCD面积的最小值为

查看答案和解析>>

同步练习册答案